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We report a new type of standing gravity wave of large amplitude, having alternatively the shape of a

star and of a polygon. This wave is observed by means of a laboratory experiment by vertically vibrating a

tank. The symmetry of the star (i.e., the number of branches) is independent of the container form and

size, and can be changed according to the amplitude and frequency of the vibration. We show that a

nonlinear resonant coupling between three gravity waves can be envisaged to trigger the observed

symmetry breaking, although more complex interactions certainly take place in the final periodic state.
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Nonlinear and dispersive effects in water waves give rise
to remarkable phenomena, such as solitary and freak
waves. These wave phenomena, originally observed at a
liquid surface, turned out to have analogues in a number of
other domains involving nonlinear waves. For example,
solitary waves have also been recognized in optical fibers
[1], and ‘‘freak’’ waves, which are giant waves of very
short lifetime [2–4], have been identified in fiber optics [5]
and in plasmas [6]. Another remarkable effect of non-
linearities is to give rise to patterning [7]. For example,
‘‘horseshoe’’ waves [8] have been shown to result from
the nonlinear interactions between five waves [9,10].
Nevertheless, although the existence of a large variety of
different waves is expected as a result of nonlinearities,
experimental evidence of new types of waves are notice-
ably scarce. In this Letter, we report the observation of a
new type of standing waves, displaying alternatively a
starlike and a polygonal shape. These waves are observed
at the free surface of a liquid submitted to vertical sinusoi-
dal vibrations.

Experimental setup and observations.—The system
studied is a fluid layer of about 1 cm deep; the liquid
chosen for the investigations is a silicon oil, which, like
water, displays a Newtonian rheological behavior. The
kinematic viscosity is 10�5 m2=s (i.e., 10 times that of
water), and the surface tension is 0:02 N=m. Experiments
are conducted with containers of various shapes (rectan-
gular, circular) and of various sizes (from 7 to 20 cm in size
or in diameter). The fluid vessel is mounted on a shaker and
experiences a vertical sinusoidal motion, with a frequency
�=2� ranging typically from 7 to 11 Hz. The amplitude of
the cell oscillations can be driven up to 20 mm and the
surface deformations are recorded by means of a fast
camera (250 frames per second).

For the sake of clarity, we describe first the results
obtained in a cylindrical container (9 cm diameter)
vibrated with a frequency �=2� equal to 8 Hz, and with

a filling level of 7 mm. For small oscillation amplitudes, we
observe at the free surface of the liquid layer ‘‘meniscus
ripples’’ originating from the contact line between the free
surface and the inner wall of the container and propagating
toward the center of the cell. These ripples oscillate with
the same frequency as the driving, and the damping lengths
are small compared to the radius of the container.
Increasing the vibration amplitude up to 1.55 mm, we
observe (see Fig. 1 and movie 1 in the Supplemental
Material [11]) two contrapropagative, axisymmetric grav-
ity waves, with a period T which is twice that of the forcing
(i.e., T ¼ 4�=�) as it is expected for parametrically
forced waves [12,13]. When the circular crest of the

FIG. 1 (color online). Axisymmetric surface waves in a cylin-
drical container (diameter 9 cm, filling level 7 mm). These waves
are parametrically excited by a vertical sinusoidal motion of the
container (vibration amplitude ¼ 1:70 mm) and oscillate sub-
harmonically with the driving frequency (here �=2� ¼ 8 Hz).
The inner and outer crests move contrapropagatively, and expe-
rience a phase shift when crossing (see movie 1 in the
Supplemental Material [11]).
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centripetal wave focuses to the center of the container, an
upward jet is formed which breaks into a droplet. It is
interesting to point out that, when the crests of the two
centrifugal and centripetal axisymmetric waves are cross-
ing, they do not simply superimpose, but they also experi-
ence a phase shift (see Fig. 2). More precisely, the crests
remain in spatial coincidence during a typical time of
0.05 s for the above experimental parameters. The phase
delay phenomenon during crossing has been recognized in
the case of two crossing plane solitary waves, and testifies
to a strong nonlinear coupling between the waves [14]. Still
increasing the vibration amplitude to 1.85 mm, we notice
the appearance of five corners in the crest line when the

centrifugal and centripetal waves are crossing (see Fig. 3
and movie 3 in the Supplemental Material [11]). These tips
signal the breaking of the rotational symmetry. Finally, for
a typical vibration amplitude of 1.95 mm, we observe a
drastic change in the wave geometry. The surface pattern
displays alternatively a star and a pentagonal shape, sepa-
rated by a time interval of 2�=� [see Figs. 4(a) and 4(b)
and movie 4 in the Supplemental Material [11]]. A remark-
able feature is that these alternate star-polygon-shaped
waves are independent of the container size and shape.
Identical patterns are observed in larger circular or rectan-
gular containers [Figs. 5(a) and 5(b)]. Note that we have
also observed stars and polygons with other symmetries
(third, fourth, and sixth order), merely by varying the
frequency and the amplitude of vibration [see Fig. 6 and
movies 6(a) and 6(b) in the Supplemental Material [11]].
Note also that the system exhibits hysteresis, meaning that
for the same forcing parameters different patterns can be
observed according to the forcing history. It is therefore not
possible to establish a phase diagram related to the sym-
metry as a function of the forcing parameters.
It must be emphasized that these waves are extreme:

(i) the wave amplitude can be of the order of 2 times the
liquid mean depth; (ii) in the trough, the depth is reduced to
a film of less than 1 mm thick. Thus, these are highly
nonlinear waves appearing in the context of shallow liquid
(i.e., the wavelength/depth ratio, about 5–7, is large). In
other words, we deal with large standing cnoidal waves.
Theoretical explanation.—Our interpretation is inspired

by those of Mermin and Troian [15] and Pomeau and
Newell [16] for quasicrystals, and that of Edwards and
Fauve [17] for the formation of quasipatterns in capillary
waves. It is noteworthy that in the present experiments we
have jkj � 1=‘c (‘c is the capillary length), so that here
surface tension effects are negligible compared to gravity
effects, and therefore we are dealing with pure gravity

FIG. 2 (color online). Same experimental conditions as in Fig. 1. The present spatiotemporal diagram corresponds to the time
evolution of the line of pixels passing through the center of the vessel. The line of pixels is plotted horizontally, and the time here is
downward. This plot allows us to visualize the motion of the contrapropagative crests, and to measure the a phase delay when crossing.
For these experimental conditions, the phase delay is equal to 0.05 s.

FIG. 3 (color online). For a larger vibration amplitude of the
cell, we observe a deformation of the axisymmetric crest, with the
appearance of five corners. This is the signature of a symmetry
breaking (filling level 7 mm,�=2� ¼ 8 Hz, vibration amplitude
1.85 mm) (see movie 3 in the Supplemental Material [11]).
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waves. Our explanatory scheme involves a nonlinear reso-
nant interaction between three surface waves. The three
wave resonance conditions read as!1 �!2 �!3 ¼ 0 and
k1 � k2 � k3 ¼ 0 (!i and ki are the angular frequencies
and the wave vectors) [18,19]. These conditions can be
simultaneously satisfied in capillary-gravity waves
[20–24], but the three-wave resonance mechanism was
considered up to now as irrelevant for the pure gravity
waves that we are facing [18]. The reason is that the
relation of dispersion of undamped, unforced gravity
waves reads as ! / jkj� with � � 1 (� ¼ 1=2 in deep
water, � ¼ 1 in shallow water), so that the above reso-
nance conditions cannot hold. However, we show that this
three-wave resonance mechanism is actually relevant to
trigger the reported phenomenon, because the relation of
dispersion is significantly modified by the dissipation and
forcing. We will show explicitly below the dispersion
relation taking into account dissipation and forcing, and

then we will briefly explain how the amended relation of
dispersion allows a three gravity wave resonant interaction
and how the latter can select an m-fold symmetry.
It is well known [12,13,25–28] that the amplitude �ðk; tÞ

of parametrically driven infinitesimal surface waves in
finite depth, or Faraday waves [29], can be modeled by a
damped Mathieu equation

@2�

@t2
þ 2�

@�

@t
þ!2

0½1� F cosð�tÞ�� ¼ 0; (1)

where � is the associated viscous attenuation, � is the
forcing angular frequency, F corresponds to a dimension-
less forcing (amplitude of the vertical acceleration divided
by the gravity acceleration g), and !0 ¼ !0ðjkjÞ is the
angular frequency of linear waves without damping and
forcing [for linear water waves in finite depth h we have
!2

0 ¼ gk tanhðkhÞ with k ¼ jkj [19]]. The viscous attenu-
ation term � accounts for both the bulk dissipation

FIG. 4 (color online). A new type of standing wave appears for a vibration amplitude of 1.95 mm (filling level 7 mm,
�=2� ¼ 8 Hz), having alternatively the shape of a five-branched star (a) and of a pentagon (b). The occurrence of these shapes is
separated by an interval of time which corresponds to the forcing period, i.e., half the pattern period (see movie 4 in the Supplemental
Material [11]).

FIG. 5. For identical filling level, vibration parameters, and forcing history, the wave pattern is independent of the container
shape and size. (a) In a cylindrical container of radius 17 cm, we observe a tiling of star-shaped waves. (b) In a square container
(17 cm� 17 cm), we observe analogue patterns. Note that here adjacent pentagons and five-branched stars oscillate with a phase shift
of �. This is an example of the possible solutions issued from the subharmonic instability.

PRL 110, 094502 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 MARCH 2013

094502-3



(proportional to �k2 [30]) and the friction with bottom

[proportional to ð�k2Þ1=2 [31]]. It must be emphasized
that Eq. (1) is linear, and is derived for infinitesimal waves
in finite depth (i.e., not in shallow water). Here we deal
with large amplitude, cnoidal waves, so that the validity of
Eq. (1) is very limited. Nonetheless, Eq. (1) is valuable in
providing insights on the mechanism triggering the forma-
tion of the patterns that we report here.

Systems obeying a damped Mathieu equation like
Eq. (1) exhibit a series of resonance angular frequencies
n�=2 (the integer n is the order of the resonance) [32,33].
According to Floquet theory, bounded periodic solutions of
Eq. (1) exist under some special relations between the
parameters [34], these relations providing a dispersion
relation (that cannot be expressed in term of elementary
functions). Numerical investigations, using various expres-
sions for �, show that there are at most two wave number
solutions of the dispersion relation for each n. This can be
easily seen from the analytical expressions that we can
derive in the limit of small F and small �, that read as

!0 � �

2

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

16
� 4�2

�2

s 3
5; (2)

for the subharmonic response, and

!0 � �

2
41þ F2

12
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F4

64
� �2

�2

s 3
5; (3)

for the fundamental one. Note that the damping introduces
a threshold in the forcing amplitude giving rise to the
formation of surface waves. In the limit of small F and �,
the thresholds are F1�8�=� for the subharmonic

response (n ¼ 1), F2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�=�

p
for the fundamental

response (n ¼ 2), andF3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�=�3

p
for the 3�=2 response

(n ¼ 3).

Unlike the case of undamped, unforced waves, relations
(2) and (3) show that two modes with different wave
numbers can oscillate at the same frequency. Therefore,
according to the forcing amplitude, different cases must be
distinguished.
(i) For F < F1, there are no solutions of the dispersion

relation (2). Physically, it means that there are no forma-
tions of parametric waves because the input of energy is
not sufficient to overcome the viscous dissipation.
(ii) For F1 <F < F2, the excited modes are only those

corresponding to subharmonic waves; i.e., they oscillate
with angular frequency �=2. If an infinite number of
subharmonic waves with the same wave number (say k�1 )
are present, we observe an axisymmetric wave because, in
a circular basin, the vertical wall boundary condition does
not favor any particular direction.
(iii) For F2 < F < F3 (where F3 is the threshold of the

3rd Mathieu’s tongue), both subharmonic modes (oscillat-
ing at �=2) and fundamental modes (oscillating at �) are
excited. There are two wave numbers k�1 and kþ1 (k�1 �
kþ1 ) corresponding to the subharmonic mode, and twowave

numbers k�2 and kþ2 (k�2 � kþ2 ) for the harmonic one. All

these modes interact nonlinearly. The simplest mechanism
to be considered to explain the formation of waves with an
m-fold rotational symmetry is the three-wave resonant
coupling mechanism. Two subharmonic waves, of different
wave vectors k�1 and kþ1 and of identical angular frequen-

cies !1 ¼ �=2, interact between them and also interact
with one fundamental mode, of wave vector k�2 and of

angular frequency !2 ¼ �. Thus, the condition !1ðk�1 Þ þ
!1ðkþ1 Þ ¼ !2ðk�2 Þ is automatically met. The additional

condition to be fulfilled by wave vectors is k�1 þ kþ1 ¼
k�2 . This three-wave resonance condition naturally gives

rise to the selection of a peculiar angle (k�1 , k
�
2 ), which

breaks the rotational invariance. Physically, the self-tuning
of the angle between the wave vectors allows a continuous

FIG. 6 (color online). Stars and polygonal waves with other symmetries can be observed with other vibration parameters or filling
levels. (a) Symmetry of fourth order (filling level 8 mm, vibration amplitude 2.40 mm, �=2� ¼ 12 Hz). (b) Symmetry of 6th order
(filling level 8 mm, vibration amplitude 2.90 mm, �=2� ¼ 12 Hz).
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energy supply from two wave numbers to the third one.
We have mentioned a three-wave resonant mechanism
with wave numbers k�1 , k

þ
1 , and k�2 , but another possible

three-wave resonance involves kþ2 instead of k�2 . This
multiplicity of possible three-wave resonances may be
one cause of the observed hysteresis. Another cause is
that, in viscous fluid, the parametric instability is subcrit-
ical, due to nonlinear effects, thus inducing a memory
effect [35,36].

The m-branched stars and m-sided polygonal patterns
correspond to the selection of an angle � ¼ 2�=m, with
m integer. Clearly, the above resonance criterion leads in
general to m noninteger. In the latter case, the surface
pattern appears unstationary, until a surface mode (not
perfectly resonant) corresponding to m integer is locked.
Once this mode (with m integer) is locked, it is seen to
survive to moderate changes in the forcing parameters. This
is a another possible origin for the observed hysteresis.

At this step, it is noteworthy that the above resonant
coupling of three parametrically forced gravity waves can
also be viewed somehow as a four-wave coupling, if we
consider the forcing as the fourth wave.

Although the above model is capable to explain the
triggering of a surface instability leading to the formation
of m-fold symmetric gravity waves, it is insufficient to
predict with accuracy the order of the final symmetries as
a function of the forcing parameters. The reason is that
Eqs. (2) and (3) are derived within the hypotheses of
infinitesimal amplitude waves, while we are facing large
amplitude cnoidal waves. Actually, the wave amplitudes
intervene certainly in the dispersion relations. Moreover,
considering sinusoidal waves as eigenmodes is a too crude
approximation, unable to capture numerous physical prop-
erties [37]. The design of a highly nonlinear theory suited
to large and steep cnoidal standing waves in shallow water
remains a theoretical challenge for future studies.
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