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We argue that the entanglement entropy for a very small subsystem obeys a property which is analogous

to the first law of thermodynamics when we excite the system. In relativistic setups, its effective

temperature is proportional to the inverse of the subsystem size. This provides a universal relationship

between the energy and the amount of quantum information. We derive the results using holography and

confirm them in two-dimensional field theories. We will also comment on an example with negative

specific heat and suggest a connection between the second law of thermodynamics and the strong

subadditivity of entanglement entropy.
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In thermodynamics, when the total energy E of a system
is increased, its entropy S grows accordingly. Its gradient is
the definition of temperature T and this leads to the first law
of thermodynamics dE ¼ TdS. Since the entropy counts
the number of microstates, this is a fundamental law which
relates the amount of information included in a system to
its total energy.

Thus, one may wonder if there is an analogous relation
for general quantum systems which are far from equili-
brium. One such example will be a system at zero tempe-
rature, i.e., a pure state. We can excite the system, for
example, by producing massive particles. It is well known
that a good measure of quantum information for a pure
state is the entanglement entropy. Therefore, in this Letter
we will study how the entanglement entropy for a certain
region grows when we increase its energy. We will largely
employ the AdS/CFT correspondence [1] and calculate the
entanglement entropy holographically [2].

Consider an excited state in a d-dimensional conformal
field theory (CFT). We assume it is almost static and
translational invariant. The AdS/CFT correspondence
argues that its ground state is equivalent to gravity on a dþ
1-dimensional anti–de Sitter space AdSdþ1 [1]. The latter
is called the gravity dual of the former. Thus, we start with
the asymptotically AdSdþ1 background:

ds2 ¼ R2

z2

�
�fðzÞdt2 þ gðzÞdz2 þ Xd�1

i¼1

ðdxiÞ2
�
: (1)

Near the boundary z ! 0, we can assume gðzÞ ’ 1=fðzÞ ’
1þmzd, where m is constant. We calculate the energy
density Ttt of the excited state in the CFT from (1) by using
the holographic energy stress tensor [3]:

Ttt ¼ ðd� 1ÞRd�1m

16�GN

: (2)

We do not need to make any assumptions about the infrared
region z ! 1 for the argument below. For example, we

can have objects such as black branes or stars in the
infrared region. The former has a horizon and is a thermal
state, while the latter does not have any horizon and is dual
to a zero temperature state.
To define the entanglement entropy SA for a subsystem

A, we divide the total system into A and B and consider
the reduced density matrix on A, called �A. �A is defined
by tracing out with respect to B: �A ¼ TrB�tot, where �tot

is the density matrix for the total system. The entanglement
entropy is defined by SA ¼ �Tr�A log�A. In the gravity
dual, we can calculate the holographic entanglement
entropy by

SA ¼ Areað�AÞ
4GN

; (3)

where �A is a minimal area surface which ends at z ¼ 0 on
the boundary of A [2].
Our first choice of subsystem A is a strip defined by

0< x1 < l, �L=2< x2;3;...;d�1 < L=2, where L is taken to

be infinite. We can parametrize the minimal surface �A by
x1 ¼ xðzÞ. Then its area is computed as

Area ¼ 2Rd�1Ld�2
Z z�

�

dz

zd�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞ þ x0ðzÞ2

q
: (4)

By minimizing this area functional, we can determine the
shape of xðzÞ. Finally, this leads to

Area ¼ 2Rd�1Ld�2
Z z�

�

dz

zd�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞ

1�
�
z
z�

�
2ðd�1Þ

vuuut ; (5)

l ¼ 2
Z z�

0
dz

zd�1

zd�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞ

1� z2ðd�1Þ

z2ðd�1Þ
�

vuuut ; (6)

where z ¼ z� is the turning point of �A, i.e., the maximal
value of z on �A.
Now, we impose an important assumption in this paper,

that l is very small such that
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mld � 1: (7)

This means that �A is localized near the asymptotically
AdS region and this is the reason why we can ignore the
detail of infrared region. In this limit, we can expand (5)
and (6) up to the first order perturbation by mld and
eventually obtain

SA ¼ Sð0ÞA þ �SA;

�SA ¼ Rd�1mLd�2l2

32ðdþ 1ÞGN

�
�

1
2ðd�1Þ

�
2
�ð 1

d�1Þffiffiffiffi
�

p
�
�
1
2 þ 1

d�1

�
�
�

d
2ðd�1Þ

�
2
:

(8)

Sð0ÞA is the holographic entanglement entropy in the pure

AdSdþ1 calculated in Ref. [2]. Thus, �SA measures how
much SA is increased in the exited state compared with the
ground state of the CFT.

On the other hand, the increased amount of energy in the
subsystem A is given by

�EA ¼
Z

dxd�1�Ttt ¼ ðd� 1ÞmlLd�2Rd�1

16�GN

: (9)

Therefore, we find the following relation:

�SA
�EA

¼
ffiffiffiffi
�

p
�
�

1
2ðd�1Þ

�
2
�
�

1
d�1

�

2ðd2 � 1Þ�
�
1
2 þ 1

d�1

�
�
�

d
2ðd�1Þ

�
2
l: (10)

For another example, consider the case where A is
given by a round ball with radius l:

P
d�1
i¼1 x2i � l2. Its

minimal surface �A is specified by r ¼ rðzÞ. The area is
computed as

Area ¼ Rd�1�d�2

Z u

�

dz

zd�1
rðzÞd�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞ þ r0ðzÞ2

q
;

where �d�2 ¼ 2 �d�1=2

�ðd�1
2 Þ is the volume of Sd�2 with the unit

radius.
By solving the equation of motion for rðzÞ derived from

the above area functional, we find the following solution up
to the first order of mld:

rðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � z2

p
þm

2udþ2 � zdðu2 þ z2Þ
2ðdþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � z2

p ; (11)

where we assumed regularity at z ¼ u. The parameter u is
a free positive constant and is related to the radius l of the
subsystem A by l ¼ rð0Þ ¼ uþmudþ1=ðdþ 1Þ. In the
end, we find the increased amount of SA

�SA ¼ �d�1=2

4ðdþ 1Þ�
�
d�1
2

� Rd�1

GN

mld: (12)

By computing �EA from (2), we finally obtain

�SA
�EA

¼ 2�

dþ 1
l: (13)

If we take the limit (7), the entanglement entropy in
CFTs, as shown in (10) and (13), satisfies a universal
relation analogous to the first law of thermodynamics

Tent�SA ¼ �EA; (14)

where the effective temperature (‘‘entanglement tempera-
ture’’) Tent is proportional to the inverse of l:

Tent ¼ cl�1: (15)

c is an order one constant. When the subsystem A is a
round sphere, we find c ¼ dþ1

2� .

In the field theoretic language, this argues that in
strongly coupled large N gauge theories, the relations
(14) and (15) are satisfied if we take the subsystem size l
to be very small such that

Tttl
d � Rd�1=GN �OðN2Þ: (16)

What we learn from (14) is the universal statement that
the amount of information included in a small subsystem A
is proportional to the energy included in A. The AdS/CFT
predicts that the constant c in (15) is universal when we fix
the shape of the subsystem A. Note that the source of the
excitation energy is arbitrary. It can be a temperature
increase or can be creations of massive objects at zero
temperature. The condition (16) is crucial here. If we do
not assume this, then Tent defined by (14) is no longer
universal and depends on the details of the excitations.
In the gravity side, the result depends on the details of
the infrared region. For example, in the AdS Black hole
at temperature T, Tent defined by (14) approaches (15) in
the limit l ! 0, while Tent becomes T in the opposite limit
l ! 1 as plotted in Fig. 1.
Finally, we would like to mention that there are earlier

works [4,5], where the entanglement entropy for ground

states Sð0ÞA was interpreted as thermal entropy. Also, the

crossover between the entanglement entropy and thermal
entropy has been discussed in Ref. [6].
Since we analyzed the gravity duals so far, it is useful

to turn to a direct calculation in quantum field theories

FIG. 1. The effective temperature Tent ¼ dð�EAÞ
dð�SAÞ jl¼fixed as a

function of l based on the holographic calculation using
the AdS4 black hole at temperature T. We set T ¼ 1, 2, and 3.
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(QFTs). However, at present, this has only been done for
two-dimensional CFTs. First, we know the general formula
of SA [7] at finite temperature T ¼ ��1 when A is an
interval of width l:

SA ¼ c

3
log

�
�

��
sinh

�l

�

�
: (17)

By expanding this in the limit l � �, we find

�SA ¼ c�2T2l2

18
¼ Rml2

48GN

¼ �

3
l�EA; (18)

where we employed the standard relations c ¼ 3R
2GN

[8] and

m ¼ ð2�TÞ2 in AdS3=CFT2. This agrees with our holo-
graphic calculation in (8). Moreover, if we set the width of
interval as 2l, then it also agrees with (13).

Also, �SA was recently calculated for low-energy
excitations on a cylinder with the circumference Lcy [9]:

�SA ¼ 2�2

3
ðhþ �hÞ l2

L2
cy

¼ �

3
l�EA; (19)

where (h, �h) are the chiral and antichiral conformal
weights of a primary operator.

In higher dimensional CFTs, we were not aware of
relevant QFT calculations at present. Instead, our result
(10) presents predictions: �SA / l2Ld�2Td at temperature
T with lT � 1; �SA / �EAl

d for a CFTd on R� Sd (unit
radius) with the subsystem radius l � 1, where �EA is the
conformal weight of the excited state.

We can extend our analysis to gravity duals of more
general nonrelativistic critical points called the hyperscal-
ing violating geometry [10]:

ds2¼R2

r2
ð�r�ð2ðd�1Þðz�1Þ=d�1��Þdt2þr2�=d�1��dr2þdx2i Þ;

(20)

where � is the hyperscaling violating exponent and z is the
dynamical exponent. We can realize this geometry as a
solution in Einstein-Maxwell-scalar theory [10].

We heat up this system at temperature T and consider
the holographic entanglement entropy for the strip subsys-
tem with the width l. Strictly speaking, we need to embed
everything into an asymptotic AdS space, where the IR
geometry looks like (20). We define z1 to be the scale
where the hyperscaling violating geometry starts to appear.
We are interested in the region z1 � l � T�1. In this case,
the analysis of the holographic entanglement entropy is not
affected by the presence of the asymptotically AdS4 region
and we can focus on the metric (20).

The finite temperature solution is the black brane solu-
tion given bymultiplying fðrÞ and 1=fðrÞ in front of dt2 and
dr2 in (20), where fðrÞ ¼ 1� ðr=rHÞðd�1Þð1þz=d�1��Þ [10].
The horizon is situated at r ¼ rH. We immediately find the
thermal entropy as the horizon area, and then by using the
first law of thermodynamics, we can calculate the energy

density. We can calculate �SA as in the previous analysis
(8). The final results look like�SA=�EA ¼ lz=ch, where ch
is an order one constant. Thus, we find Tent / l�z, which is
natural from the definition of the dynamical exponent z.
We would like to discuss an entanglement entropy coun-

terpart of the positivity of specific heat, which is required
by the second law of thermodynamics. A good example of
this kind is the D3-brane shell [11]. The near horizon
geometry of D3-brane shell is given by the metric:

ds2 ¼ R2

z2hðzÞ
�X3
�¼0

dx�dx
�

�
þ R2hðzÞ

�
dz2

z2
þ d�2

5

�
;

hðzÞ ¼ 1ðz � z0Þ; hðzÞ ¼ z20=z
2ðz � z0Þ: (21)

This solution represents D3-branes distributed at z ¼ z0
like a spherically symmetric shell. The geometry for z > z0
is a flat spacetime R1;9, while that for z < z0 is the
AdS5 � S5. This is dual to a N ¼ 4 super Yang-Mills in
the Coulomb branch [11].
By exciting this system, we can make a small black hole

at z ¼ 1. This is a Schwarzchild black 3-brane in flat
spacetime and thus it has the negative specific heat. This
solution is thermodynamically unstable and will finally
decay into the standard AdS black hole solution.
Consider the holographic entanglement entropy for the

strip with the width l in the D3-brane shell. It is computed
by finding the eight-dimensional minimal area surface
x ¼ xðzÞ at a time t ¼ 0. The area functional is given by

Area ¼ 2�3R8L2
Z z�

0

dz

z3
hðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðzÞ2 þ hðzÞ2

q
; (22)

where z ¼ z� is the turning point of a connected surface.
There is another candidate of the minimal surface which
consists of two disconnected surfaces defined by x ¼ l=2
and x ¼ �l=2. We plotted the regularized area, which is

defined by subtracting the area law divergence L2

�2
[12] from

the area, in Fig. 2. The result looks similar to the one in the
gravity duals of confining gauge theories [13]. Notice that
there are two branches in the connected surface for a fixed
value of l. The one with the lower area is sensible as it
satisfies the strong subadditivity equivalent to the concav-

ity d2SA
dl2

� 0 [14–16]. However, the other one is not. Since

we need the smallest area when there are several candi-
dates of �A, we choose the lowest area surface. For a
certain value of l ¼ lc, the disconnected surface is favored
as it has a smaller area, where SA shows an analogue of the
phase transition as a function of l.
Next let us turn to the unstable surface which is not

concave. Even though this surface does not contribute to
SA, it is intriguing to understand the meaning of its pres-
ence. This surface extends deep into the IR flat space region
z ! 1. Thus, it is natural to expect that this is related to a
Schwartzshild black 3-brane in R1;9. This makes us suspect
that the negative specific heat is related to the violation of
strong subadditivity. Remember that the entropy S and
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energy E of a black p-brane in R1;9 behave like Sp /
VpT

p�8 and Ep / VpT
p�7, where Vp is the volume of the

p-brane and T is its temperature. On the other hand, in the
small l limit, we can show that the finite part of holographic

entanglement entropy behaves as ½SA�finite / R8L2l6

z8
0

. By

identifying Vp with the volume of subsystem A and the

temperature T with 1=l, we find that ½SA�finite agrees with
the entropy of black 3-brane S3 up to a numerical factor.

Finally, let us study the connection between the sign of
the specific heat and the strong subadditivity. We assume
that the finite part of the entanglement entropy in any
dimension behaves like ½SA�finite ¼ �lqþ1 for the strip
subsystem A with the width l. Since we expect SA is a
monotonically increasing function of l, � is positive (or
negative) when qþ 1> 0 (or qþ 1< 0). The strong sub-
additivity (i.e., concavity) requires q � 0. By identifying
the temperature and volume as T / 1=lz and Vp / lLp�1,

we can relate SA to the thermal entropy Sth / VpT
�q=z. The

positive specific heat requires q � 0. In this way, we find
that the strong subadditivity is equivalent to the positivity
of specific heat in this setup.

In conclusion, the main result of this paper is that the
entanglement entropy in CFTs satisfies the first lawlike
relation (14) with the universal entanglement temperature
(15) when the subsystem A is so small that (16) is
satisfied. This means that the variation �SA is given by
physical observables. We derived this from the AdS/CFT
and confirmed this in 2D CFTs. An interesting future
problem is to check this directly in higher dimensional
QFTs.

There are many different ways to add the energy �EA to
the subsystem A. Consider a zero temperature setup where
�EA depends on an external parameter x such as the

distance between two interacting particles. Then we can
express its force Fx in terms of �SA as follows:

Fx ¼ � d

dx
�EAðxÞ ¼ �Tent

d

dx
�SAðxÞ: (23)

Though this might look like an entropic force [17,18], the
sign is opposite. This force Fx acts so that it tries to reduce
the entanglement entropy. In the gravity dual, Fx can be a
gravitational force or some other forces which exist in the
gravity theory. It is an interesting future problem to study
the implication of (23).
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FIG. 2. The plot describes the regularize minimal surface area
(divided by �3 R8 L2) as a function of the width l in the
D3-brane shell. We choose z0 ¼ 1. The two thick curves corre-
spond to the connected minimal surfaces, where upper one is not
concave and thus is not physical. The horizontal dashed line
represents the disconnected surface in the D3-brane shell. The
dotted curve is the result for the pure AdS.
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