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Experiments on particle motion show that it is often subdiffusive. This subdiffusion may be due to

trapping, percolationlike structures, or viscoelastic behavior of the medium. While the models based on

trapping (leading to continuous-time random walks) can easily be distinguished from the rest by testing

their nonergodicity, the latter two cases are harder to distinguish. We propose a statistical test for

distinguishing between these two based on the space-filling properties of trajectories, and prove its

feasibility and specificity using synthetic data. We moreover present a flow chart for making a decision on

a type of subdiffusion for a broader class of models.
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Experiments on particle motion in living cells aimed at
understanding molecular crowding [1–4] have unveiled
that diffusion in such environments is often anomalous;
i.e., the mean squared displacement (MSD) does not grow
proportionally to time, hx2ðtÞi / t, but follows a slower
pattern

hx2ðtÞi / t� (1)

with 0<�< 1 (subdiffusion), and the nature of this
anomaly has to be understood. Anomalous diffusion is
not only apparent in biological systems, but is found in
complex systems ranging from amorphous semiconductors
[5], geology [6], to turbulent systems [7].

There are several mathematical models leading to sub-
diffusion, corresponding to different physical assumptions
about the structure and energy landscape of the system in
which the subdiffusive motion takes place. Since one is
mostly interested in the actual microscopic structure of the
system, an important task is working out tests which allow
for distinguishing between different models giving the
same prediction for the MSD. The three most popular
models whichmight be pertinent to explaining subdiffusion
in cells are (i) continuous time random walk (CTRW), a
mathematical model which is physically realized in sys-
tems with traps, i.e., binding sites of different energetic
depths, a case pertinent to energetic disorder, (ii) diffusion
on fractal structures, as exemplified by percolation, a situ-
ation pertinent to structural disorder, and (iii) fractional
Brownian motion [8] (FBM), a Gaussian process with sta-
tionary increments which satisfies the following statistical
properties: the process is symmetric, i.e., hxHðtÞi ¼ 0
where xHð0Þ ¼ 0, and the MSD scales as hx2HðtÞi � t2H

where H is the Hurst exponent. Note that H < 1=2 leads
to subdiffusion, whileH ¼ 1=2 recovers Brownian motion.
FBM physically corresponding to systems with predomi-
nating slow modes of motion and is realized in viscoelastic
media as exemplified by polymers and polymer networks,

where disorder does not play a leading role. Lastly, one has
to discuss (iv) the time-dependent diffusion coefficient
(TDDC) model—normal diffusion with a time-dependent
diffusion coefficient, which is used to fit experimental
results from, for example, FRAP (fluorescence recovery
after photobleaching) experiments [9]. This model corre-
sponds, e.g., to a situation when the step rate is explicitly
time dependent, and does not have a clear physical inter-
pretation in application to crowded media.
The nonstationary (and nonergodic) models of anoma-

lous diffusion like CTRWor TDDC are easily distinguished
from the ergodic and stationary models of diffusion (as
exemplified by FBM or diffusion on percolation structures)
by applying tests aimed at checking the stationarity of
increments or ergodicity. At present, two of them can be
recommended: the p-variation test [10] which can be con-
sidered as a generalized test of temporal homogeneity of the
process, and the moving average vs ensemble average test
[11] which is a clear test for ergodicity, see Refs. [12,13] for
their practical application.
It ismuch harder to distinguishwithin the class of ergodic

non-Markovian processes, i.e., to tell whether the observed
subdiffusion is due to geometrical restrictions (e.g., perco-
lation) or to a viscoelastic medium (FBM). More detailed
information on these twomodels, and how to simulate them,
appears in the Supplemental Material [14]. Note that both
models correspond to antipersistent random walks (RWs),
and may have the same step-step (or velocity-velocity)
correlation function. The corresponding correlation func-
tion for percolation is calculated in Ref. [15] and on the
coarse-grained level it is connected with the spectral
dimension of the percolation structure. The step-step
correlation functions are shown in the Supplemental
Material [14]. For any physical model resulting in
FBM the correlation function follows from the spectral
properties of the slowest modes. Distinguishing between
the models is particularly challenging in single-molecule
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tracking experiments where only one or few trajectories of
motion are recorded [16].

One fundamental difference between the two is the
probability distribution function (PDF) of displacements
which is Gaussian for FBM but non-Gaussian for percola-
tion, meaning that a Gaussianity test (i.e., in the exact
relation between the second and the higher even central
moments of the PDF) may in principle solve the problem
[17]. However, the limited amount of available information
is not enough to produce a distinguishable PDF (an ex-
ample is shown in the Supplemental Material [14]), and
moreover no analytical form is known for the percolation
PDF. Moreover, Gaussianity on its own does not shed light
on the nature of the type of constraint governing the
tracer’s motion, i.e., whether its motion is confined to an
inhomogeneous geometrical structure, which does not con-
siderably change on the time scale of the experiment, or
such a structure is absent, and the restrictions to the motion
change with time (like in the Rouse model of polymers or
in single-file diffusion). This information can be delivered
by the tests of spatial homogeneity of the corresponding
motion. The aim of the present work is to give such a test
on a single trajectory level, and to prove its feasibility and
specificity using synthetic data for percolation and for
FBM with exactly the same MSD behavior.

Our present discussion is confined to a two-dimensional
(2D) situation, such as the diffusion of membrane proteins
in the cell membrane, which constitutes one of the most
interesting cases where single molecule tracking methods
are used, see, e.g., Ref. [18] and references therein. Our
discussion can easily be generalized to 3D, if the data for
all three coordinates are available. Caution is advised if the
data available correspond to the 2D projection of a 3D
trajectory, like in Ref. [19], in which case our method may
not be appropriate.

On the level of the RW description, the processes with
nonstationary and with stationary increments differ in how
the clock time t is translated into the steps of the problem. In
both CTRW and TDDC the steps follow inhomogeneously
in time, and the mean number of steps n taken up to time t
grows as hni / t�, while the MSD as a function of the
number of steps grows as hx2ðtÞi / n. Thus, CTRW and
TDDC models correspond to normal diffusion if the clock
time is translated into steps of the RW process. This trans-
formation can either follow a randomprocess (CTRW)or be
deterministic (TDDC). These processes fill space homoge-
neously like in normal diffusion. On the other hand, for
FBM and for a RW on a percolation cluster, being time-
homogeneous processes (with stationary increments),
the number of steps is always proportional to time. Here
the fractal dimension of the trajectory is connected to the
exponent � characterizing anomalous diffusion,

hr2ðtÞi / t� ¼ t2=dw / n2=dw ; (2)

where dw ¼ 2=� is called the walk dimension. For FBM
the exponent � is related to the Hurst exponent by

� ¼ 2=dw ¼ 2H. The fractal dimension df is defined

through how the amount of available sites within a radius
r scales with r: Mn ’ rdf .
Let us consider the number of sites within a radius r as a

function of the average time needed to reach such a radius.
We do so by substituting the square root of the MSD’s time

dependence in place of r: Mn ’ rdf � ðn1=dwÞdf ¼ nds=2,
where ds is the spectral dimension and is related to df and

dw through the Alexander-Orbach relation [20].
Note that we are dealing with a recurrent walk, where

Mn grows slower than n, i.e., df < dw. In this case each of

the sites within the reachable distance is visited at least
once, and the total number of distinct visited sites behaves
as Sn � Mn, i.e., Refs. [21,22]:

Sn � ndf=dw: (3)

In the case of FBM the geometry is Euclidean, meaning
that df ¼ 2 or 3 in 2D or 3D, respectively. In percolation,

on the other hand, df � 1:8958 and df � 2:52 when

embedded in 2D and 3D, respectively. The walk dimension
associated with a RW on a 2D percolation cluster is
dw ¼ 2:87.
In our approach to the problem we propose to exploit the

fact that FBM explores a Euclidean structure (df ¼ d, with

d being the dimension of space), while a RW on a perco-
lation cluster explores a fractal one with df < d.

To formulate the null hypothesis as to how the random
walker fills space, let us look at the ratio of the average
number of distinct visited sites within n time steps, Sn, and
the space enclosed in the radius rðnÞ which the random
walker reaches on average within the same number of time

steps, rdðnÞ ¼ hr2ðnÞid=2. We examine Sn=hr2ðnÞid=2 �
ndf�d=dw , so that our test is based on the calculation of
the exponent:

� � df � d

dw
; (4)

i.e., the difference between df and d for a given dw. We

note that if the random walker fills space homogeneously,
the two quantities grow at the same rate, meaning that the
curve is expected to be flat, or � ¼ 0. Indeed for FBM
df ¼ d, meaning that � ¼ 0, as opposed to the case of a

RW on a percolation cluster where df < d, leading to

� < 0.
To assess the success of our test, we simulated 2D single

trajectories of FBM and of a RWon a percolation cluster at
criticality. We chose the Hurst exponentH so that the MSD
of the two is identical; the value dw ¼ 2:87 for a RW on a
percolation cluster corresponds to H ¼ 0:348. We mod-
eled an experiment with optical limitations, using a coarse
grained lattice with a characteristic grain size �. Let us at
first take the grain’s size to be equal to the average step size
of the trajectory under consideration, and refer to this case
as the case � ¼ 1. Two sample trajectories are shown in the
inset of Fig. 1. Note that the trajectory of the RW on a
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percolation cluster is restricted here to only horizontal and
vertical directions since the percolation cluster is based on
a square lattice (see Supplemental Material [14] for an
example of such a cluster). This is also the reason for the
small oscillations found in the autocorrelation function,
also shown in the Supplemental Material [14]. A fast and
precise generator for fractional Gaussian noise in the anti-
persistent case is described in Ref. [23].

Thus, our test is based on calculating � from the slope of

SðtÞ=hr2ðtÞid=2 on the double logarithmic scale and testing
whether this � is different from zero. The null hypothesis
� ¼ 0 corresponds to FBM, and its rejection witnesses in
favor of the percolation model. For the specific case of a
RW on a 2D percolation cluster, we expect � ¼ �0:037.
Note that it is typically hard to detect the differences in the
exponents of such magnitude on the basis of relatively
short runs. However, as will be seen in what follows, we
are in luck.

We found that for single trajectories as is the method is
not sensitive enough due to strong noise. This noise can
be reduced by looking at a moving-window time average.

Figure 1 displays temporally averaged SðtÞ=hr2ðtÞid=2 in
2D, for trajectories of a RW on a percolation cluster, and
of FBM. As one readily infers from the plot, absolute

values of SðtÞ=hr2ðtÞid=2 at any given t differ strongly for
different realizations of the corresponding process, but
the overall form of the dependence is similar in each
realization. Both for percolation and for FBM the curves
start with large negative slope. The FBM curves flatten
after a relatively short transient, as expected, while the
percolation ones continue to decay. This overall type of

behavior is universal, but (as we will stress below) the
length of the transient does depend on the spacial resolu-
tion � and on averaging time Tmax used. Provided the flat
region in the curve is seen, one can safely say, that the
process is the FBM.
Let us turn to a quantitative analysis of the curves. We

now fit each of these curves to a power law and extract the
exponent corresponding to �. Figure 2 shows the distribu-
tion of � resulting from 400 FBM and percolation trajec-
tories. A closer look at Fig. 2 reveals that while the peak of
the FBM � distribution is centered around 0, the percola-
tion distribution is not centered around �0:037, but at a
much larger negative number: i.e., around �0:18 for an
averaging time window Tmax ¼ 50 and around �0:12 for
Tmax ¼ 550. This is due to large corrections to scaling for
the percolation case (see, e.g., Ref. [24]), which luckily
play in our favor: for smaller Tmax the distributions are
clearly distinguishable, with no overlap, meaning also that
a relatively short trajectory is enough. So in practice, given
a single trajectory one may calculate � for different Tmax,
and see whether these are negative and converge to a
smaller negative number (pointing at a RW on a fractal),
or tend to zero (FBM). Note that the slope � of the
corresponding curves for percolation approaches its final
value of �0:037 from below, and therefore the absolute
values j�j< 0:037 immediately witness against the perco-
lation hypothesis.
It should be noted that this method is sensitive to spatial

(and temporal) resolution. We performed the same test for

FIG. 1 (color online). Participation function divided by the
MSD (Sn=hr2ðnÞid=2 for 2D), temporally averaged with a moving
window of 0< �< 150 for five trajectories of FBM (blue, which
flatten out) and five trajectories created of a RWon a percolation
cluster (red, with a clear negative slope). All trajectories are
40 000 time steps long. Two sample trajectories are shown in the
inset.

FIG. 2 (color online). Distribution of � for 400 FBM trajecto-
ries (blue peaks on the right) and 400 trajectories of a RW on a
percolation cluster (red peaks on the left). The trajectories are
temporally averaged within time windows of Tmax ¼ 50 time
steps (solid line) and of Tmax ¼ 550 (dashed line). While the
FBM distributions stay centered at the expected value of 0, the
ones for percolation start far off (at � �0:18 for Tmax ¼ 50) and
slowly converge to the expected value of�0:037 as shown in the
inset. The dashed line indicates the expected asymptotic value.
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� being twice the average step size of the trajectories. We
also renormalized the time (the length of the trajectory)
with the time it takes for the random walker to reach a

distance � (i.e., through the MSD, tnorm � �2=�). The
average slopes over 200 trajectories with a time averaging
window of Tnorm

max ¼ 3000 and temporal coarse graining of
the order of tnorm are �0:042 for percolation (theoretical
value is �0:037), and �0:021 for FBM (theory ¼ 0). The
correct renormalization of Tmax is necessary for performing
a decisive test. Without temporal coarse graining (i.e., with
an effectively shorter averaging interval), the results would
be �0:064 for percolation, and �0:039, i.e., below the
asymptotic percolation value, for FBM. This sensitivity
of the method to spatial and temporal resolution means
that the highest possible resolution has to be aimed for in
experiments.

We can now add this test to the test of ergodicity,
building a toolbox to help identify the underlying physics
of a given experimental trajectory. We summarize our
toolbox in the form of a decision tree in Fig. 3. One may
take this toolbox one step further and consider a more
general and realistic scenario, of subordination of any
two of these models, as previously considered [25,26]. In
a biological cell, for example, there is no reason why one
may not encounter both energy traps (modeled with
CTRW) and crowding (modeled as a RW on a percolation
cluster), i.e., the problem would be modeled as a RW on a
percolation cluster, with the subordination of waiting times
at each step. This generalization is out of the scope of this
Letter, and will be set forth elsewhere.

We proposed here a toolbox of tests that may be run on
single trajectories in the aim of discerning between pos-
sible physical realities including combinations of energy
traps, structural disorder or crowding, and a viscoelastic
medium. We note that not all tests may be feasible

according to the experimental setup and the type of data
at hand, but it nonetheless illuminates the possibilities and
gives a broader understanding.
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FIG. 3 (color online). Flow chart of the decision process in
discerning between the three main subdiffusive models: CTRW,
FBM, and a RWon a fractal structure. One starts by assessing the
ergodicity or temporal homogeneity of the process. If the process
if found to be nonergodic, it is CTRW. If the process is ergodic,
one is left to discriminate between FBM and a RW on a fractal
structure. Here one analyzes SðtÞ=hr2ðtÞid=2 for 2D. If this ratio is
a constant, the process is FBM, if it decays, the process is a RW
on a fractal structure.
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