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We study the robustness of quantum information stored in the degenerate ground space of a local,

frustration-free Hamiltonian with commuting terms on a 2D spin lattice. On one hand, a macroscopic

energy barrier separating the distinct ground states under local transformations would protect the

information from thermal fluctuations. On the other hand, local topological order would shield the

ground space from static perturbations. Here we demonstrate that local topological order implies a

constant energy barrier, thus inhibiting thermal stability.
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A self-correcting quantum memory [1] is a physical
system whose quantum state can be preserved over a
long period of time without the need for any external
intervention. The archetypical self-correcting classical
memory is the 2D Ising ferromagnet. The ground state of
this system is twofold degenerate, and so it can store one
bit of information. If the memory is put into contact with a
heat bath after being initialized in one of these ground
states, thermal fluctuations will lead to the creation of
small error droplets of inverted spins. The boundary of
such droplets are domain walls, i.e., one-dimensional
excitations whose energy is proportional to the droplet
perimeter. If the temperature is below the critical Curie
temperature, the Boltzmann factor will prevent the creation
of macroscopic error droplets. Thus, when the system is
cooled down (either physically or algorithmically) after
some macroscopic storage time, it will very likely return
to its original ground state: the memory is thermally stable.

This behavior contrasts with the 1D Ising ferromagnet
whose domain walls are pointlike excitations. The creation
of a domain wall costs some constant amount of energy (the
gap), but once created the excitations can freely diffuse on
the chain at no extra energy cost. As a consequence, arbi-
trarily large error droplets can form at a constant energy
cost, so this 1D memory is thermally unstable.

While the 2D Ising ferromagnet features thermal stabil-
ity, it is vulnerable to static, local perturbations. Indeed,
an arbitrarily weak magnetic field breaks the ground state
degeneracy and favors one ground state over the other.
When this perturbed system is subject to thermal fluctua-
tions, the bulk contribution of the magnetic field over-
whelms the boundary tension of the domain wall, so that
once error droplets reach a critical size they rapidly expand
to corrupt the memory. This type of instability plagues any
system with a local order parameter, and so they cannot be
robust quantum memories. Indeed, distinct ground states
give different values of this order parameter, so that a local
field coupling to the order parameter lifts degeneracy.

In 2D and higher, there exist quantum systems with no
local order parameter and whose spectrum is stable under

weak, local perturbations. These systems have a degener-
ate ground state separated from the other energy levels by a
constant energy gap, and perturbations only alter these
features by an exponentially vanishing amount as a func-
tion of the system size. Kitaev’s toric code [2], a Z2 spin
liquid, is the best known example of this type. However,
excitations in Kitaev’s code are pointlike objects—as for
the 1D Ising model—and so it does not offer a macroscopic
energy barrier protection to thermal fluctuations [1,3–6].
In this Letter, we study the possibility of combining the

thermal stability of the 2D Ising model with the spectral
stability of Kitaev’s code to obtain a robust quantum
memory in 2D. We consider d-level spins located at the
vertices V of a 2D lattice � ¼ ðV; EÞ, with Hamiltonian

H¼�X
X�V

PX; with ½PX;PY�¼0 and kPX k�1: (1)

We denote the number of spins N � jVj. The term PX is
supported on the subset X of the spins; i.e., it acts trivially
on the complement �X ¼ V � X of X. The Hamiltonian is
local in the sense that PX ¼ 0whenever X has radius larger
than some constant w. Because we are only interested in
the ground state and scaling of the energy gap, we can
assume without loss of generality that each PX is a projec-
tor. We also assume thatH is frustration free, meaning that
the ground states minimize the energy of each term
of the Hamiltonian separately, i.e., PXjc 0i ¼ jc 0i. Then,
the ground space C is the image of the code projector
P ¼ Q

XPX (henceforth, the PX ¼ 0 are not included in
such products).
This family of lattice models, called local commuting

projector code (LCPC) includes most known models of
topological order including quantum doubles [2], Levin-
Wen [7], and Turaev-Viro [8] models. It has been proved
that LCPCs have a stable spectrum [9–12] if they obey the
following local topological order condition.
Definition (Local topological order).—For any topologi-

cally trivial region A, letPA ¼ Q
X:X\A�;PX be the product

of projectors that intersect region A. For a system with
local topological order, �A � Tr �AP has the same kernel as
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�loc
A � Tr �APA and moreover Tr �Ac / �A for any ground

state jc i.
Our main result is that any system with local topological

order has only a constant energy barrier between ground
states. This result can be understood intuitively when the
low-energy excitations of the system are localized decon-
fined anyons. In that case, it is possible to modify the
ground state by creating an anyon pair, dragging one of
them along a topologically nontrivial loop and annihilating
it with its partner. This process clearly requires only a
constant amount of energy—the mass gap—because the
anyons are deconfined. The obstacle in formalizing this
heuristic picture is to prove that the low-energy excitations
are indeed localized deconfined anyons. Toy models of
topological order [2,7,8] usually take such an anyon model
as a starting point to construct a local Hamiltonian.
Here, we take the opposite path: our starting point is any
Hamiltonian with local topological order and we want to
characterize its low-energy excitations. This is an active
area of research [13]. It is unclear whether excitations are
always pointlike in these models and, as noted by Haah
and Preskill [14], whether creating and moving them can
always be realized by a sequence of local unitary trans-
formations. Thus, our result is a step toward a general
understanding of low-energy excitations in models with
local topological order, which should be of independent
interest. Indeed, our proof will essentially confirm the
above heuristic picture, but it circumvents the delicate
unitarity issue.

Background.—Characterizing the thermal stability of a
memory requires detailed knowledge of its thermalization
process. Because we seek to address a broad class of
systems, our analysis cannot be model specific. We thus
retain only two essential features common to all thermal-
ization processes: (i) the bath interacts locally with the
system, and (ii) high-energy states are penalized. As we
now explain, we can combine these features to obtain a
sufficient condition for thermal stability.

We will say that a memory with Hamiltonian Eq. (1) has
an energy barrier at most � if there exist a ground state c 0

and a sequence of T 2 polyðNÞ completely positive trace
preserving maps Ek, each acting locally on the system and a
finite-dimensional ancilla A, such that (i) starting from c 0,
the sequence returns the system to the ground space, (ii) in a
state that differs from the initial state c 0, and (iii) the energy
of any intermediate state is at most� above the ground state
energy E0. More formally, these conditions are

Tr½P � ET . . . E2E1ðc 0 � �AÞ� � 2
3; (2a)

Tr½c 0 � ET . . . E2E1ðc 0 � �AÞ� � 1
3; (2b)

max
k21;2;...;T

Tr½H � Ek. . . E2E1ðc 0 � �AÞ� � E0 ¼ �; (2c)

where P is the code projector and the factors 2
3 and 1

3

are arbitrarily chosen constants. The additional ancillary
system, initially in state �A, is used to model some finite

non-Markovian effects of the bath, so that each map Ek has
complete access to it. The energy barrier of a memory is
taken to be the smallest value of � over all such sequences
of maps. If a memory has a macroscopic energy barrier
� � N� for some constant �> 0, then any short sequence
of local transformations that returns the system to an
altered ground state must visit a high energy state and is
therefore thermally stable. Our main result is obtained by
exhibiting a sequence of maps Ek with an energy barrier �
that is a constant, independent of the system size N for any
LCPC. In addition, we show that the length T of this
sequence is proportional to the linear size of the lattice
when the system has local topological order.
We call a logical operator an operator L that maps the

ground space to itself, i.e., ½L; P� ¼ 0. In particular, we are
interested in logical operators that act nontrivially on the
code space, i.e., LP � P, as they can alter the encoded
information. In a series of papers [14–17], it was shown
that any 2D LCPCs admit at least one nontrivial logical
operator supported only on a 1D (constant width) strip of
the lattice. However, it was unclear how to apply it through
a sequence of local transformations.
An important subclass of LCPCs is stabilizer codes [18],

for which PX ¼ 1
2 ðI þ SXÞ where SX is a tensor product of

Pauli matrices �0;1;2;3 (with �0 being the identity I).
Because of this particular structure, the nontrivial string-
like logical operator described above is also a tensor prod-
uct of Pauli matrices, L ¼ N

‘
k¼1 �

k
jk
where k labels the ‘

sites along the strip in some natural way, from left to right,
say. Then, applying the error sequence f�k

jk
g will build up

to the operator L and will only visit intermediate states
with a constant energy above the ground state. Indeed, at an
intermediate stage n, 0< n< ‘, only a segment

N
n
k¼1 �

k
jk

of the logical operator L has been applied. This segment
commutes with all terms PX except the ones within dis-
tance OðwÞ from site n, so that only these terms contribute
to the energy: the excitations are pointlike objects located
in the vicinity on the end of the string segment, and so the
memory is unstable [15,17,19,20]. This simple argument
fails for more general LCPCs because logical operators do
not have a tensor product structure.
Noise model.—In this Section, we present an error

sequence fEkg that achieves a constant energy barrier. To
simplify the presentation, we coarse-grain the lattice—i.e.,
we partition the lattice into balls of radius w and view each
ball as a site occupied by a single D-level spin with

D ¼ dOðw2Þ—so that we can assume without lost of gen-
erality that (i) � is a regular ‘	 ‘ square lattice; (ii) the
nonzero terms PX in Eq. (1) act only on 2	 2 cells; and
(iii) there exists a nontrivial logical operator supported on a
single line L of the lattice. Projectors whose support
intersects L define the strip projector PL ¼ Q

X\L�;PX

supported on the extended strip L0; see Fig. 1. Similarly,
projectors whose support intersects sites k� 1 and k on L
define local constraints Pk�1;k ¼

Q
X\fk�1;kg�;PX.
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The sequential noise model is a sequence of individual
iterations for every site k 2 L. Each iteration consists
of several trials. Trial m of iteration k corresponds to

(i) applying a trial unitary transformation UðmÞ
k on site k,

chosen at random from the Haar measure, and
(ii) measuring the local constraint Pk�1;k. Trials are

repeated until a successful trial in which the þ1 outcome
of Pk�1;k is obtained and the next iteration begins. Given

the state on the strip, a unitary transformation is eligible if
it leads to a successful trial with nonzero probability. The
initial iteration k ¼ 1 differs because the constraint is not
measured. Physically, the whole procedure corresponds to
creating a random excitation at iteration 1, and moving it
along the strip across to the opposite edge by subsequent
iterations.

The sequential noise model only creates intermediate
states of constant energy. The reason is the same as for
stabilizer codes: the excitations are pointlike objects.
Indeed, during iteration k, the state is almost everywhere
indistinguishable from a ground state because it obeys all
constraints Pi�1;i, except Pk�1;k and Pk;kþ1 because only

those potentially do not commute with UðmÞ
k . Furthermore,

a failed trial during iteration k does not affect the outcome
of previous iterations because local constraints commute.
Next, we prove that each trial has a constant success
probability and that the sequential noise model has a non-
trivial effect on the ground space.

Expected number of trials.—The sequential model
would run into a dead end, an iteration requiring an infinite
number of trials, if the state of the strip admits no eligible
unitary transformation at the kth iteration [21]. Such a dead
end occurs in the Ising-like toric code introduced in
Ref. [9], where the plaquette operators Bp of the toric

code are replaced by an Ising-like interaction BpBq whose

symmetry is broken by a single defect plaquette Bp
 to

recover the toric code ground space. The sequential model
could start preparing the Bp ¼ �1 sector and reach a dead

end when it encounters the Bp
 ¼ þ1 constraint. However,

that code does not have local topological order, and its
spectrum is unstable (Bp
 is a local order parameter). We

now show that dead ends do not occur with local topologi-
cal order.

Proposition 1.—Local topological order implies that, at
any iteration k, there exists an eligible unitary transforma-
tion Uk.
Proof.—We will prove the contrapositive. Let k be the

first iteration where no Uk is eligible and let c be the state
during this iteration. We have

Pk�1;kUkjc i ¼ 0 8 Uk: (3)

Mathematically, applying a Haar-random unitary operator
is on average equivalent to applying the maximally depo-
larizing channel Dk,

Dk½c � � Trk½c � � Ik=D ¼
Z

Ukjc ihc jUy
k dUk: (4)

Thus, the average of Eq. (3) over the Haar measure, is

Pk�1;kðTrk½c � � Ik=DÞ ¼ 0: (5)

Tracing out the region Rk ¼ fði; jÞ:i � k; jjj � 1g � L0 of
the extended strip located at the right of site k (cf. Fig. 1),
Eq. (5) yields

Trk½Pk�1;k�TrRk
½c � ¼ 0: (6)

Thus, there exists a state j�i in the support of TrRk
½c � that

is in the image of Pi�1;i for i < k but also is in the kernel of
Trk½Pk�1;k�. This entails violation of local topological

order on site k� 2 since Trk�2½�� is in the kernel of �k�2¼
Trk�2P but in the image of �loc

k�2 ¼ Trk�2½Pk�3;k�2	
Pk�2;k�1�. j

Proposition 2.—When the system has local topological
order, the expected number of trials Ak at iteration k is
finite and independent of the system size.
Proof.—We introduce two maps,

P k�1;k½�� ¼ Pk�1;k�Pk�1;k; (7)

Qk�1;k½�� ¼ ðI � Pk�1;kÞ�ðI � Pk�1;kÞ; (8)

which represent a successful and failed measurement of the
local constraint Pk�1;k. In a failed trial, the map Qk�1;k is

always immediately preceded and followed by a depolar-
ization of site k. This sequence can be rewritten in an
equivalent form

DkQk�1;kDk ¼ Bk�1 �Dk; (9)

which defines a biasing map Bk�1. This map is not trace
preserving because the trace of its unnormalized output
state is the average probability of a failed trial.
The sequence of m failed trials followed by a successful

trial produces the map

P k�1;kDkðQk�1;kDkÞm ¼ P k�1;kðBm
k�1 �DkÞ; (10)

where we have used Eq. (9) and D2
k ¼ Dk. Thus, given

a state c , the average probability pðmÞ
k ðc Þ of a success

FIG. 1. The strip L contains ‘ sites (large circles) whose
Cartesian coordinates are fðk; 0Þ1 � k � ‘g. Local constraints
Pk�1;k act on nearest-neighbor sites k� 1 and k and on particles

in the extended strip L0 ¼ fði; jÞjjj � 1g.

PRL 110, 090502 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 MARCH 2013

090502-3



after m failures is pðmÞ
k ðc Þ ¼ Tr½P k�1;kðBm

k�1 �DkÞ½c ��.
Therefore, the expected number of trials

Akðc Þ ¼ X1
m¼1

ðmþ 1ÞTr½P k�1;kðBm
k�1 �DkÞ½c �� (11)

¼ Tr½P k�1;kððIk�1 �Bk�1Þ�2 �DkÞ½c �� (12)

is bounded by the norm of the superoperator inside
the trace and thus only depends on the microscopic details
of H, not on system size. Note that the geometric
sum of Eq. (12) converges because Bk�1 cannot have
þ1 eigenvectors in the ground space for a local topologi-
cal ordered system, because those would contradict
proposition 1 [22]. j

Nontrivial average effect.—We now prove that the
sequential noise model corrupts the encoded information.
The effect of a single iteration k averaged over all possible
trials amounts to the map

Ek ¼
X1
m¼0

P k�1;kðBm
k�1 �DkÞ (13)

¼ P k�1;k½ðI �Bk�1Þ�1 �Dk�; (14)

and the average total effect of the sequential noise model
E � Q

‘
k¼1 Ek is

E ¼ Y‘
k¼2

P k�1;k½ðI �Bk�1Þ�1 �Dk�D1: (15)

Terms with nonoverlapping support trivially commute.
We thus move all depolarizing channels to act first, which
globally depolarizes the strip. To move the biasing opera-
tors past the projectors, it suffices to prove that C �
½Bk;P k�1;k�Dkþ1 is zero. Because of their nonoverlapping

supports, Dkþ1 commutes with P k�1;k and C¼½BkDkþ1;
P k�1;k�¼½Dkþ1Qk;kþ1Dkþ1;P k�1;k�¼0 because Qk;kþ1

and P k�1;k commute. Hence, the terms of Eq. (15) can

be reordered into

E ¼ Y‘
k¼2

P k�1;k

Y‘
k¼1

ðI �BkÞ�1
Y‘
k¼1

Dk: (16)

Thus, the average effect of the sequential noise model is
equivalent to three consecutive transformations. First, all
particles on the strip are removed and replaced by particles
in random states. At this point, it is clear that the memory
has been irreversibly corrupted. Then, an arbitrary trans-
formation is applied on the strip before returning the
system to its ground space. Hence, the error sequence
fEkg‘k¼1 satisfies conditions from Eq. (2).

Discussion.—It is known that 2D LCPCs have a unique
Gibbs state [23], so that they cannot store information in
thermal equilibrium. Thus, the question of self-correction
is fundamentally about the thermalization time. The noise

process we presented corrupts the memory after a time that
grows proportionally to the system size, which can be
interpreted as a (macroscopic) upper bound to the storage
time. However, there are good reasons to believe that the
actual storage time is in fact independent of the system
size. At nonzero temperatures we expect a finite density of
defects, so the noise process we described could be hap-
pening in parallel all over the lattice. As pairs of defects
meet, they can fuse to the vacuum with some probability to
create longer error strings. The memory time is then related
to the percolation of these error chains, which should be
independent of the system size.
Our result does not completely close the door to the

existence of a robust quantum memory in 2D. First, local
topological order is a sufficient, but perhaps not necessary
condition for spectral stability. Second, we have restricted
the form of the Hamiltonian. In realistic physical systems,
the terms PX need not commute, the ground space can be
frustrated, and interaction can decay algebraically with the
distance between sites. Third, a macroscopic energy barrier
is one mechanism that leads to thermal stability, but there
may exist other mechanisms. In particular, a system in
contact with a heat bath tends to minimize its free energy
F ¼ E� TS. Thus, we could imagine a system with a
large entropy barrier: among all possible local noise
sequences, only a vanishingly small fraction will induce
a change of sector, while the overwhelming majority lead
to dead ends as described above. Such topological spin-
glasses [24] could offer an enhanced quantum memory
lifetime. This proposal is distinct from existing studies
showing that disorder induces an exponential localization
of anyons [25–28], as those only address zero-temperature
storage.
Conclusion.—Our main result hints at a general trade-off

in 2D between a quantum memory’s ability to suppress
thermal and quantum fluctuations. Recent discoveries
[29–31] indicate that this trade-off is not necessary in
3D. Our result extends prior findings [15,17] derived for
stabilizer codes to a broader, widely studied class of
models that includes quantum doubles [2], Levin-Wen
[7], and Turaev-Viro [8] models. It also generalizes
straightforwardly to higher dimensions for systems that
have quasi-one-dimensional nontrivial logical operators.
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[28] B. Röthlisberger, J. R. Wootton, R.M. Heath, J. K. Pachos,

and D. Loss, Phys. Rev. A 85, 022313 (2012).
[29] J. Haah, Phys. Rev. A 83, 042330 (2011).
[30] S. Bravyi and J. Haah, Phys. Rev. Lett. 107, 150504

(2011).
[31] K. Michnicki, arXiv:1208.3496.

PRL 110, 090502 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 MARCH 2013

090502-5

http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1088/1751-8113/40/24/012
http://dx.doi.org/10.1088/1751-8113/40/24/012
http://dx.doi.org/10.1088/1751-8113/42/6/065303
http://dx.doi.org/10.1088/1751-8113/42/6/065303
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1016/j.aop.2010.08.001
http://dx.doi.org/10.1016/j.aop.2010.08.001
http://dx.doi.org/10.1063/1.3490195
http://dx.doi.org/10.1063/1.3490195
http://arXiv.org/abs/1001.4363
http://arXiv.org/abs/1109.1588
http://dx.doi.org/10.1016/j.aop.2010.05.002
http://dx.doi.org/10.1103/PhysRevLett.110.067208
http://dx.doi.org/10.1103/PhysRevLett.110.067208
http://dx.doi.org/10.1103/PhysRevA.86.032308
http://dx.doi.org/10.1103/PhysRevA.86.032308
http://dx.doi.org/10.1088/1367-2630/11/4/043029
http://dx.doi.org/10.1103/PhysRevLett.104.050503
http://dx.doi.org/10.1103/PhysRevLett.104.050503
http://arXiv.org/abs/0810.3557
http://dx.doi.org/10.1016/j.aop.2011.06.001
http://dx.doi.org/10.1088/1367-2630/14/7/073048
http://dx.doi.org/10.1088/1367-2630/14/7/073048
http://dx.doi.org/10.1103/PhysRevLett.107.210501
http://dx.doi.org/10.1080/14786435.2011.609152
http://dx.doi.org/10.1103/PhysRevB.83.075124
http://dx.doi.org/10.1103/PhysRevB.83.075124
http://dx.doi.org/10.1103/PhysRevLett.107.030503
http://dx.doi.org/10.1103/PhysRevLett.107.030503
http://dx.doi.org/10.1103/PhysRevLett.107.030504
http://dx.doi.org/10.1103/PhysRevLett.107.030504
http://dx.doi.org/10.1103/PhysRevA.85.022313
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevLett.107.150504
http://dx.doi.org/10.1103/PhysRevLett.107.150504
http://arXiv.org/abs/1208.3496

