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We present an ab initio determination of the spin response of the unitary Fermi gas. Based on finite

temperature quantum Monte Carlo calculations and the Kubo linear-response formalism, we determine

the temperature dependence of the spin susceptibility and the spin conductivity. We show that both

quantities exhibit suppression above the critical temperature of the superfluid-to-normal phase transition

due to Cooper pairing. The spin diffusion transport coefficient does not display a minimum in the vicinity

of the critical temperature and drops to very low values Ds � 0:8@=m in the superfluid phase. All these

spin observables show a smooth and monotonic behavior with temperature when crossing the critical

temperature Tc, until the Fermi liquid regime is attained at the temperature T�, above which the pseudogap
regime disappears.
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There are basically two flavors of superfluids—fermionic
and bosonic. The bosonic superfluid is realized when typi-
cally weakly interacting bosons condense and form a
Bose-Einstein condensate (BEC). The typical fermionic
superfluid is of Bardeen-Cooper-Schrieffer (BCS) type,
where fermions in time-reversed orbitals form weakly
bound Cooper pairs and turn into a BEC of Cooper pairs.
The BEC superfluidity vanishes when the condensate frac-
tion ceases to have a macroscopic value with increasing
temperature and the long-range coherence is lost. On the
other hand, when a BCS superfluid undergoes a phase
transition to a normal state, Cooper pairs break due to
thermal motion and there are no more bosonic constituents
left to form a BEC. With the experimental confirmation of
the BCS-BEC crossover in fermionic cold gases [1,2], it
became clear that one can have a new kind of system where
both bosonic and fermionic superfluid features are present at
the same time. The paradigmatic example is the unitary
Fermi gas (UFG) where, unlike the BCS or BEC cases,
the interparticle interaction is strong, and the binding energy
of the Cooper pair is comparable to the Fermi energy. It is
believed that the unpolarized unitary Fermi gas, in a tem-
perature region just above the critical temperature Tc, exists
in a state which is neither fully bosonic nor fully fermionic
in character, called the pseudogap state, widely studied in
high-Tc superconductors [3,4]. This is a temperature regime
where a significant fraction of the Cooper pairs is present,
even though the long-range coherence among them is lost,
as is superfluidity. While the existence of the pseudogap
regime in high-Tc superconductors is an experimentally
well known fact, the nature of the corresponding regime
around the critical temperature Tc of the UFG has remained
an open question. It is a tantalizing question, whether the
pseudogap regime exists in dilute neutron matter as well.

The properties of the neutron superfluid in the neutron star
crust are very similar to those of the unitary gas, as high-
lighted by Bertsch’s 1999 Many-Body X challenge. The
reliable calculation of the neutrino processes in neutron
stars, controlled by the neutron spin response [5], is a
long-standing problem and the present results will likely
shed new light on these phenomena.
The most striking feature of the pseudogap regime is the

behavior of the fermionic density of states, which shows a
dramatic depletion at the Fermi level. This was confirmed
to exist in quantumMonte Carlo (QMC) simulations of the
UFG [6,7], see Fig. 1, as well as in experiments [8–10].
The transition from a pseudogap to a normal state in the
UFG is somewhat similar to a gas-plasma transition, where
no discontinuities are observed, which makes it difficult to
observe. Indeed, no observable imprints on the thermody-
namic properties have been detected in experiments so far
[11,12], while at the same time theory also predicts none
[6,7,13,14]. A direct measurement of the local density
of states of a UFG in a trap is desirable. However,
one can suggest different kinds of measurements as well.
A strongly paired, but not necessarily superfluid, system
would respond qualitatively differently to an external
probe than a nonpaired system, if one were to try to
separate the two fermions in a pair. In particular, in a paired
system the spin susceptibility and spin conductivity should
be significantly suppressed when compared to the unpaired
regime. One should therefore observe a marked difference
between the response of a system in the pseudogap regime
from a normal Fermi liquid one, which is the expected
behavior at temperatures greater than T�.
Inspired by recent measurements of various spin

responses like the spin susceptibility [15], spin transport
coefficients [16] or dynamic (spin) structure factors [17],
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we present here an ab initio evaluation of the spin suscep-
tibility �s and the spin conductivity �s for unpolarized
homogeneous unitary Fermi gas. We show that both of
these quantities carry a strong signal indicating survival of
the Cooper pairs above the critical temperature. Our new
results are consistent with previous studies [6,7], where the
existence of the pseudogap regime was found between the
critical temperature Tc ¼ 0:15ð1Þ"F and T� ¼ 0:19ð2Þ"F,
where "F ¼ p2

F=2m is the free Fermi gas energy, and pF ¼
@ð3�2nÞ1=3 is the Fermi momentum corresponding to the
total particle number density n. While in the previous
estimation of the T� temperature finite resolution of the
method provided only the lower bound, the analysis of the
spin responses allows us to provide a significantly more
accurate interval for the pseudogap onset.

Moreover, the computed responses allow us to extract
the temperature dependence of the spin diffusion coeffi-
cient from first principle calculations. There has been
considerable speculation as to whether the transport coef-
ficients possess universal lower bounds imposed by quan-
tum mechanics. The best known example is a conjecture
formulated by Kovtun, Son, and Starinets of the existence
of a lower bound �=s � @=ð4�kBÞ on the ratio of the shear
viscosity � to the entropy density s for all fluids [18].
While in our previous work [19] we found that path inte-
gral Monte Carlo (PIMC) calculation is compatible with a
well-defined minimum for the �=s ratio in the vicinity
of the critical temperature, here we show that the spin
diffusion does not exhibit a similar minimum as a function
of temperature.

To determine the spin properties of the UFG we employ
the PIMC technique on the lattice, which provides numeri-
cally exact results, up to quantifiable systematic uncertain-
ties (for details see Ref. [13]). Since the pseudogap regime
is expected to exist in a rather small temperature region
0:15 & T="F & 0:2 it needs to be checked if it survives
when the thermodynamic V ! 1 and continuum n ! 0
limits are recovered. This step is of great importance as the
critical temperature approaches the value Tc ¼ 0:15ð1Þ"F
only in the thermodynamic and continuum limits [13]. At
the same time the temperature T� above which there are no
Cooper pairs left, and which reflects short range correla-
tions among particles, does not show a similar strong vol-
ume dependence. To check the stability of the results, as the
thermodynamic and continuum limit are approached, we
performed simulations using three lattices Nx ¼ 8, 10, 12
with corresponding average density n ’0:08, 0.04, and
0.03, respectively. The systematic errors related to finite
volume effects as well as effective-range corrections, are
estimated to be likely �10%–15%, while the statistical
errors of the PIMC data are below 1%; see Ref. [20] for
more details. Henceforth, we define units @ ¼ m ¼ kB ¼ 1.
The spin susceptibility as well as the spin conductivity

can be theoretically determined using linear response the-
ory via the Kubo relations. The uniform static spin suscep-
tibility �s ¼ @ðn" � n#Þ=@ð�" ��#Þ is obtained as [21]

�s ¼ lim
q!0

1

V

Z �

0
d�hŝzqð�Þŝz�qð0Þi; (1)

where ŝzq ¼ n̂q" � n̂q# represents a difference between spin-
selective particle number operators in Fourier representa-

tion n̂q� ¼ P
pâ

y
�ðpÞâ�ðpþ qÞ, � ¼ 1=T is the inverse

temperature and h. . .i stands for the grand-canonical
ensemble average. The imaginary-time dependence of an

operator is generated as Ôð�Þ ¼ e�ðĤ��N̂ÞÔe��ðĤ��N̂Þ,
where Ĥ is the Hamiltonian of the system, � is the chemi-

cal potential, and N̂ is the particle number operator. The
expectation values can be evaluated directly for q ¼ 0.
In this case the spin operator ŝzq¼0 commutes with the

Hamiltonian and the expectation value is � independent.
Consequently, the QMC calculation consists of the evalu-
ation of the expectation value of a two-body operator, and
the static spin usceptibility can be computed very accu-
rately within our framework.
In Fig. 2, the static spin susceptibility �s in units of free

Fermi gas susceptibility �0 ¼ 3n=2"F is shown for tem-
perature range 0:1 � T="F � 0:5. The results on 83, 103,
and 123 lattices exhibit satisfactory agreement with each
other and no systematic trend in the data has been detected
as we approach the thermodynamic and the continuum
limit. For temperatures 0:25"F–0:5"F no strong tempera-
ture dependence of the spin susceptibility is observed. The
latter is well below the susceptibility of the free Fermi gas
with a value around �s � 0:45�0, which is in qualitative
agreement with the Fermi liquid picture as well as results
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FIG. 1 (color online). Temperature evolution of the density of
states profiles, extracted from the QMC simulations [7]. The
(blue) lines marked T� � 0:2"F correspond to the onset of the
pseudogap regime, the (red) line marked Tc ¼ 0:15"F corre-
sponds to the critical temperature. The profiles for T ¼ 0:21"F
and T ¼ 0:12"F are compared with the density of states for a
Fermi liquid (dashed lines).
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of other groups [22–26]. In the interval T� ¼ 0:20–0:25"F
we find the beginning of pronounced suppression of the
spin susceptibility, which we associate with the existence
of Cooper pairs in the system. Note that already at Tc the
spin susceptibility is about half its value at the onset of
suppression (roughly T ¼ 0:25"F). Thus, two temperature
scales are clearly distinguishable: the critical temperature
of the superfluid-to-normal phase transition Tc ¼ 0:15"F,
and the onset of the Cooper-pair formation T�.

The static spin conductivity �s represents another quan-
tity which is expected to be strongly affected by the pres-
ence of the Cooper pairs as it measures response of the spin
current js ¼ j" � j# once the weak external F force which

couples with opposite signs to the two spin populations
is applied to the system, i.e., js ¼ �sF. In order to extract
the spin conductivity we consider the Kubo formula,
which relates the frequency-dependent spin conductivity

to the corresponding spectral density: �sð!Þ ¼ �	ðjjÞ
s

ðq ¼ 0; !Þ=!; while the static spin conductivity is defined
in the limit of zero frequency: �s ¼ lim!!0þ�sð!Þ. The
spectral density 	ðjjÞ

s ðq; !Þ is related to the imaginary-time
(Euclidean) current-current correlator provided by the
PIMC method

GðjjÞ
s ðq; �Þ ¼ 1

V
h½ĵzq"ð�Þ � ĵzq#ð�Þ�½ĵz�q"ð0Þ � ĵz�q#ð0Þ�i; (2)

by inversion of the spectral relation

GðjjÞ
s ðq; �Þ ¼

Z 1

0
	ðjjÞ
s ðq; !Þ cos h½!ð�� �=2Þ�

sin hð!�=2Þ d!; (3)

where ĵzq�ð�Þ stands for the third component of Fourier

representation of the spin-selective current operator.

To invert Eq. (3) we have applied the methodology which
combines two complementary methods: singular value
decomposition and maximum entropy method, both
described in Ref. [27]. An additional a priori information
includes the non-negativity of the spin conductivity
�sð!Þ � 0, a Lorentzian-like structure at low frequencies

(Drude model), and the asymptotic tail behavior �sð! !
1Þ ¼ C=ð3�!3=2Þ, where C is the Tan contact density
[25]. The contact density was extracted from the tail of
the momentum distribution nðpÞ � Cp�4, using a tech-
nique similar to that of Ref. [28]. As the universal decay
of the tail distribution starts around p=pF � 2, we were
unable to extract the contact for the Nx ¼ 8 lattice. In that
case we used the value of C extracted from the Nx ¼ 10
lattice. The inset of Fig. 3 shows the temperature depen-
dence of the contact density used as a priori information.
For calculations in the Nx ¼ 12 lattice, we found that the
signal-to-noise ratio for the correlators at T < 0:16"F is
insufficient to perform a stable reconstruction of the spec-
tral density. For more details about the reconstruction
process see the Supplemental Material [20].
In Fig. 3 we present the inverse of the static spin con-

ductivity called the spin drag rate �sd ¼ n=�s, which is the
rate of the momentum transfer between fermions with
opposite spins. For T ¼ 0:25"F–0:5"F, no strong tempera-
ture dependence is observed. For all three lattices the spin
drag rate exhibits a significant enhancement above Tc, in
the interval T� ¼ 0:20"F–0:25"F, which is consistent with
the occurrence of the spin susceptibility suppression. Such
an enhancement is expected for a system with strong
correlations between particles of opposite spins.
Finally, the computed spin susceptibility and spin con-

ductivity allow us to extract the spin diffusion coefficientDs
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FIG. 2 (color online). The static spin susceptibility as a func-
tion of temperature for an 83 lattice solid (red) circles, 103 lattice
(blue) squares, and 123 lattice (green) diamonds. The vertical
black dotted line indicates the critical temperature of the super-
fluid to normal phase transition Tc ¼ 0:15"F. For comparison,
the Fermi liquid theory prediction and recent results of the
T-matrix theory produced by Enss and Haussmann [25] are
plotted with solid and dashed (brown) lines, respectively. The
experimental data point from Ref. [15] is also shown.
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FIG. 3 (color online). The spin drag rate �sd ¼ n=�s in units
of Fermi energy as a function of temperature for an 83 lattice
solid (red) circles, 103 lattice (blue) squares and 123 lattice
(green) diamonds. Vertical black dotted line locates the critical
temperature of superfluid to normal phase transition. Results of
the T-matrix theory are plotted by dashed (brown) line [25]. The
inset shows the extracted value of the contact density as function
of the temperature. The (purple) asterisk shows the contact
density from the QMC calculations of Ref. [32] at T ¼ 0.
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in a fully ab initio manner. In the hydrodynamic regime
it defines the proportionality between the spin current js
and spatially varying polarization by Fick’s law js ¼
�Dsrðn" � n#Þ. The spin diffusivity Ds can be related to

the spin conductivity and the spin susceptibility by the
Einstein relation Ds ¼ �s=�s. In Fig. 4 we show the tem-
perature evolution of the spin diffusion coefficient. In the
normal phase, for temperatures 0:25"F–0:5"F the diffusiv-
ity is approximately constant Ds � 1:8. Surprisingly, we
find that the spin diffusion coefficient decreases substan-
tially when the system enters the pseudogap regime, acquir-
ing eventually a value around Ds � 0:8 in the superfluid
phase. Such a low value can be understood as a quantum
limit for this transport coefficient. The bound originates
from kinetic theory, where Ds � vl, v is the average parti-
cle speed, and l is the mean free path. For a strongly

correlated system, the product of v� pF � n1=3 and l�
n�1=3 cancels the density dependence, giving Ds � 1.

In Ref. [29] the existence of a minimal value of the
diffusivity was predicted for a temperature somewhat
below the Fermi temperature, within Landau-Boltzmann
theory. Recently, it was reported that Luttinger-Ward the-
ory sets the minimum Ds ’1:3 at T ¼ 0:5"F [25]. Our
ab initio calculations do not confirm the presence of a
minimum for the spin diffusion coefficient down to T ¼
0:1"F, and they do not rule out possibility that the diffu-
sivity Ds decreases further when temperature is lowered.

Our results for the spin susceptibility and the spin drag
rate deviate from the recent measurements of the MIT
group [16] extracted from fully polarized cloud collisions.
This technique, in which two noninteracting clouds collide,
and in which pairs do not exist and likely are not formed, is
less suitable to probe the low temperature regime, where
pairs already exist and their presence is of crucial impor-
tance. Pair formation in such an experiment would require
three-body collisions. Recent theoretical simulations
[23,30,31] demonstrated that this experiment can be

explained assuming that the measurement explores a non-
equilibrium state associated with a quasirepulsive Fermi
gas and two-body collisions alone. On the other hand, the
technique based on speckle imaging of spin fluctuations,
used to measure the spin susceptibility of the system in
thermal equilibrium [15], is in remarkable agreement with
our theoretical results; see Fig. 2.
In summary, we have presented results for the spin

response of the UFG at finite temperature, obtained
through an ab initio PIMC approach. The spin susceptibil-
ity and the spin conductivity bear signatures of Copper-pair
formation above the critical temperature Tc ’0:15"F up to
T� � 0:20–0:25"F. The spin diffusion coefficient does not
display a minimum in the vicinity of the critical tempera-
ture, but instead drops to very low values Ds � 0:8 in the
superfluid phase. We showed that the spin response of a
unitary Fermi gas is not affected by the superfluid to
normal transition, but only by the presence of Cooper pairs,
and all these spin observables show a smooth and mono-
tonic behavior up to the temperature T�, where the pseu-
dogap cease to show up in the density of states.
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Note added.—Similar studies of �sðTÞ and density of

states in an attractive 2D Hubbard model (in the context of
cuprates) have been performed in Ref. [33]. There are,
however, qualitative differences between the physics of
the attractive 2D Hubbard model and dilute Fermi gases
in two dimensions, which are practically noninteracting;
see Chap. 7 in Ref. [2].
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