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In multiband superconductors, each superconducting condensate supports vortices with fractional

quantum flux. In the ground state, vortices in different bands are spatially bounded together to form a

composite vortex, carrying one quantum flux �0. Here we predict dissociation of the composite vortices

lattice in the flux flow state due to the disparity of the vortex viscosity and flux of the vortex in different

bands. For a small driving current, composite vortices start to deform, but the constituting vortices in

different bands move with the same velocity. For a large current, composite vortices dissociate and

vortices in different bands move with different velocities. The dissociation transition shows up as an

increase of flux flow resistivity. In the dissociated phase, Shapiro steps are developed when an ac current is

superimposed with a dc current.
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Multiband superconductivity is realized in many super-
conductors, such as the well studied V3Si, Nb2Se, the
recently discovered MgB2 [1], and iron-based supercon-
ductors [2]. In these superconductors, electrons in different
bands are cooled into distinct superconducting conden-
sates, which interact with each other through interband
tunneling. Multiband superconductivity may also exist in
the proposed liquid hydrogen under pressure, where both
the proton and electron bands contribute to superconduc-
tivity [3,4]. In this case the interband tunneling is absent.
Multiband superconductors have attracted considerable
attention recently, and phenomena unique to multiband
superconductors, which do not have a counterpart in
single-band superconductors, have been predicted [5–14]
and observed experimentally [15–17].

In multiband superconductors, there are several super-
conducting gaps j��j expði��Þ, characterizing the quasi-

particle excitation for a superconducting condensate in each
band. Because the gap function is a complex function, each
condensate thus supports vortex excitation with fractional
quantized flux [7]. The energy of a single fractional quan-
tized vortex diverges logarithmically due to the counter
flows of different condensates that have no charge transfer
and are not coupled with magnetic fields. Thus it is ther-
modynamically unstable. Stable fraction quantized vortex
is predicted to exist in mesoscopic superconductors [18,19]
or near the surface of multiband superconductors [20].

Vortices in different condensates appear simultaneously
when an external field is applied to multiband super-
conductors. There are both interband and intraband vortex
interaction. Vortices with the same polarization in the same
condensate repel each other through the exchange of mas-
sive photon. The vortices in different condensates interact
repulsively due to themagnetic interaction.Meanwhile they
attract each other due to the coupling to the same gauge
field. The latter is more important and the net interaction of

vortices in different condensates is attractive. They also
attract with each other due to the interband tunneling in
superconducting channel. Therefore vortex in different con-
densates in the ground state is bounded and their normal
cores are locked together to form a composite vortex with
the standard integer quantum flux �0 ¼ hc=ð2eÞ. It is an
interesting question whether the composite vortex can dis-
sociate. The melting of composite vortex lattice due to
thermal fluctuations was studied, and it was found that the
vortex lattice in the superconducting condensate with
weaker phase rigidity melts first as temperature increases,
while the lattice ordering in other condensates remains [11].
Here we consider the dissociation of composite vortex

lattice in the flux flow region. With an external current,
vortex in condensate with larger flux experiences stronger
Lorentz force. On the other hand, the viscosity of vortex in
different condensates is different due to the different size of
normal core. As a result, vortices in some bands tend to
move faster. For a small external current, the disparity of
vortex motion can be balanced by the interband attraction
between vortices in different condensates, and vortices in
different condensates move with the same velocity, as
shown in Fig. 1. However at a large current, the interband
attraction may be insufficient to compensate the disparity
of driving force and viscosity of vortices in different
condensates and composite vortices are dissociated; i.e.,
vortices in different condensates move with different
velocities. In the decoupled phase, the flux flow resistivity
increases. The Shapiro steps are induced under an addi-
tional ac current when the oscillation of vortex lattice
induced by the ac current is resonant with the vortex
oscillations due to the periodic potential created by the
relative motion of vortex lattice in different condensates.
We use the London free energy functional for two-band

superconductors with a Josephson-like interband coupling.
The free energy density therefore can be written as
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is the London penetra-

tion depth for each condensate with superfluid density
n�. A is vector potential, m� is the electron mass in

�-th band and � is the interband Josephson coupling.
The effective penetration depth for the two-band system
is ��2 ¼ P

2
�¼1 �

�2
� . In the absence of external magnetic

fields, the phase of different superconducting condensates
is locked, �1 ¼ �2 for � > 0 and �1 ¼ �2 þ � otherwise.
The decoupling of phase due to the injection of current
in superconducting wire both in equilibrium [12] and
out of equilibrium [8] was discussed by Gurevich and
Vinokur recently.

MinimizingF L with respect toA, we obtain the London
equation

�2r�r� Bþ B ¼ ��

X
�;j

�ðr� r�;jÞ; (2)

where �� ¼ �2�0=�
2
� is the fractional quantum flux and

r�;j ¼ ðx�;j; y�;jÞ is the vortex coordinates for the vortex in
the �th condensate. The vortex line is assumed to be
straight. F L can be split into two contributions [20],
F L ¼ Fm þF c with the magnetic coupling,

F m ¼ 1

8�
½B2 þ �2ðr � BÞ2�: (3)

F m is the same as that in single-band superconductors
because there is only one gauge fieldA in superconductors.
F m accounts for the magnetic coupling between vortices in
different condensates. F c represents the coupling due to
the phase difference between condensates,

F c ¼ �1�2

32�3�2
½rð�1 � �2Þ�2 � � cosð�1 � �2Þ: (4)

F c does not depend on A and accounts for the locking of
two superconducting phases. For a fractional vortex where
�1 changes by 2� around r0 while �2 does not change, the
self-energy per unit length is

Efv ¼
�
�1

4��

�
2
ln

�
�

�1

�
þ �1�2

16�2�2
ln

�
L

�1

�

þ j�j
Z

dr2½1� cosð�1Þ�; (5)

where L is the linear size of the system and �� is the

coherence length. Efv diverges at L ! 1 due to the neutral
mode described by the term proportional to ½rð�1 � �2Þ�2
in Eq. (4). The Josephson contribution in Eq. (5) renders
the fractional vortex linearly divergent in L. Thus a frac-
tional vortex is thermodynamically unstable in bulk
superconductors [7]. For a composite vortex where ��
changes by 2� around the same position, F c ¼ 0 and its
self-energy is finite.
To calculate intraband and interband interaction for

vortex, one needs to know ��. They can be obtained by

minimizing Eq. (4) with respect to �1,

�1�2

16�3�2
r2ð�1 � �2Þ � � sinð�1 � �2Þ ¼ 0; (6)

subject to the boundary condition accounting for vortices

r� ðr��Þ ¼ 2�
X
�;j

�ðr� r�;jÞ: (7)

The interaction between vortices according to Eqs. (6) and
(7) is nonlinear; thus, it is a many-body interaction. The
term r2ð�1 � �2Þ is of the order 1= �a2 with �a being the
average distance between vortices in the same condensate.

For a strong field such that �a��J¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�2=ð16�3�2j�jÞp

,
the sine term becomes �a2=�2

J times smaller than the gra-
dient term and, thus, can be neglected. In this case, F c

reduces to the free energy for the XY model. For MgB2,
� � 150 J=m3 [9], it requires fields stronger than 4 T at
temperature T ¼ 0 K. For V3Si [21] and FeSe1�x [22], the
required field is smaller because the interband coupling �
is much weaker.
We then discuss the interband and intraband interaction

between vortices, neglecting the Josephson interband cou-
pling term. Then both F m and F c are quadratic in B and
��; therefore, the interaction between vortices is pairwise.

FIG. 1 (color online). (a) Schematic view of vortex lattice in
two-band superconductors. (b) In the ground state, the normal core
of vortex in one condensatewith flux�2 (red circle) is lockedwith
that in the other condensate with flux �1 (green circle) to form a
composite vortexwith one quantumflux�0 ¼ �2 þ�1. (c)With
a small current, two vortex lattices are shifted with respect to each
other but movewith the same velocity and the composite vortex is
deformed. (d) At a large current, the two vortex lattices are
decoupled, move with different velocities, and the composite
vortex is dissociated. The dissociation transition occurs at Jd.
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F m accounts for short-range interband and intraband
repulsion between vortices with the same polarization.
F c describes the plasma interaction in two dimensions
and the interaction between vortices is long range. The
term proportional to ðr��Þ2 accounts for intraband repul-

sion and the term proportional to �r�1r�2 produces
interband attraction between vortices in different conden-
sates. This interband attraction outweighs the interband
repulsion in F m. The intraband repulsion between two
vortices in the same condensate separated by a distance
r�;ij � r�;i � r�;j is

Vintraðr�;ijÞ ¼
�2

�

8�2�2
K0

�
r�;ij

�

�
� �1�2

8�2�2
ln
�
r�;ij

�
; (8)

and the interband attraction between two vortices in the
different condensates with a separation r12;ij� r1;i�r2;j is

Vinterðr12;ijÞ ¼ �1�2

8�2�2

�
K0

�
r12;ij
�

�
þ lnðr12;ijÞ

�
: (9)

Equations (8) and (9) are valid away from vortex cores.
In the flux flow state, vortices in each condensate driven

by the Lorentz force move and cause dissipation, resulting
in vortex viscosity. The dissipation is due to the motion of
the normal core; thus, the viscosity for vortices in each
band depends on �� of the corresponding band. In the

framework of the Bardeen-Stephen model, the viscosity
is given by �� ¼ �2

0=ð2�c2�2
�Þ. We use the quasistatic

approximation; i.e., the vortex structure in each condensate
does not change in the dynamic region and introduce over-
damped dynamics for vortices

��@tr�;i ¼ 1

8�2�3

X
j

�
�2

�K1

�
r�;ij

�

�
þ�1�2�

r�;ij

�

þ �1�2

8�2�3

X
j

�
K1

�
r12;ij
�

�
� �

r12;ij

�
þ J��

c
;

(10)

where J is the external current. The effect of disorder
becomes less important in the flux flow region because
the disorder is averaged out by vortex motion, and lattice
ordering is improved [23,24]. In the lattice phase, the
intraband vortex interaction vanishes due to symmetry.
The interband vortex attraction can be written in the
momentum space and we only take the contribution from
the dominant wave vector G ¼ ð�2�=a; 0Þ for the vortex
lattice moving along the x direction. Here a is the lattice
constant and we assume a square lattice. In the region
2��=a � 1, the equation of motion for the center of
mass of vortex lattice R� in each band becomes

�0
2@tðR2 � R1Þ ¼ �ð1þ �0

2Þ sinðR2 � R1Þ þ ð�0
2 � �0

2ÞJ;
(11)

@tR1 þ �0
2@tR2 ¼ ð1þ�0

2ÞJ: (12)

We have written Eq. (11) in terms of the relative motion
between the vortex lattice in different bands, and the sine
term accounts for the attraction between the two lattices.
Here dimensionless units are introduced: length is in unit
of a=ð2�Þ, time is in unit of �1a=ð2�FdÞ, current is in unit
of cFd=�1. Fd is the maximum attractive force between
two lattices Fd ¼ �1�2a=ð64�6�4Þ. �0

2 � �2=�1 and
�0
2 � �2=�1. Similar equations for vortex motion in

bilayer superconducting films was presented in Ref. [25].
At a small current, two vortex lattices in different band

move as a whole with a velocity v1 ¼ v2 ¼ ð1þ �0
2Þ�1 �

ð1þ�0
2ÞJ. The centers of mass of these two lattices devi-

ate with a separation sin�1½ð1þ �0
2Þ�1ð�0

2 � �0
2ÞJ�. At

this stage, the composite vortex starts to deform. The
maximum attraction is reached at R2 � R1 ¼ �=2 or a=4
in real unit. At a threshold current

Jd ¼
�����ð1þ �0

2Þð�0
2 � �0

2Þ�1
�����; (13)

these two lattices decouple and move at different veloc-
ities, resulting in the dissociation of composite vortex.
Their corresponding velocity is

v� ¼ ð1þ �0
2Þ�1

�
�
ð1þ�0

2ÞJ �
�1

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0

2 � �0
2Þ2J2 � ð1þ �0

2Þ2
q �

(14)

The dependence of v� on J is displayed in Fig. 2. At a large

current J � Jd, each lattice behaves independent with
velocities v1 ¼ J and v2 ¼ J=�0

2.
The decoupling of two lattices can be observed experi-

mentally in transport measurements. The I-V character-
istics can be derived from power balance condition

0

2

4

6

0 1 2 3 4 5
0

2

4

E
 [

F
dΦ

1/
( η

1a
2 c)

]

η2/η1=5, Φ
2
/Φ1=1

v
2

v 
[F

d
/ η

1]

J [c Fd/Φ
1
]

v
1

FIG. 2 (color online). The dependence of velocity v1, v2 and
electric field E on the current J, obtained from Eqs. (11), (12),
and (14).
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�1v
2
1 þ �2v

2
2 ¼ JEa2 with E the electric field. The I-V

curve is shown Fig. 2, where the differential resistivity
dE=dJ increases in the decoupled phase. Experimental
observation of such increase may be challenging because
the decoupling current usually is large, and the Larkin-
Ovchinnikov instability of vortex lattice may be important
[26]. The vortex core shrinks due to the electric field
caused by vortex motion and the flux flow resistivity
increases with current, which blurs the dissociation tran-
sition in the I-V curve. Nevertheless, the dissociation
transition can be confirmed unambiguously by measure-
ment of the Shapiro steps in the decoupled phase, as
discussed below.

In the decoupled phase, if one takes one lattice as refer-
ence, the other lattice experiences periodic potential
induced by the reference lattice. When an ac current is
added in superposition to the dc current, the oscillation of
the moving lattice induced by the ac current may be in
resonance with the oscillation due to the periodic potential
of the reference lattice if the period of the ac current
matches with the period of the potential. This results in
Shapiro steps in I-V curves. The physics is the same as that
in Josephson junctions and Eq. (11) also describes the phase
dynamics in overdamped Josephson junctions. With a cur-
rent J¼JdcþRe½Jacexp½ið!tþ’Þ��, the center of mass of
each lattice is R� ¼ v�tþ Re½A� exp½iðv2 � v1Þt�� in the
region jv1�v2j¼!�1. From Eqs. (11) and (12), we
obtain A�¼��½1�i��Jacexpði’Þ=�1�=½ðv2�v1Þ�1�.
The dc current is Jdc ¼ ð�0

2 � �0
2Þ�1 Re½�0

2ðv2 � v1Þ þ
ð1þ �0

2ÞðA2 � A1Þ=2�. When one changes Jdc, ’ adjusts
correspondingly because v1 � v2 is locked with the driving
frequency!, and a Shapiro step is traced out. The height of
the Shapiro step is

Jsp ¼ ð1þ �0
2Þð�0

2�
0
2 � 1Þ

ðv2 � v1Þð�0
2 � �0

2Þ
: (15)

The results for Shapiro step obtained by solving Eqs. (11)
and (12) with J ¼ Jdc þ 1:2 sinð!tÞ numerically, are shown
in Fig. 3. Shapiro steps appears when ! ¼ v1 � v2. Here
we only considered the dominant resonance. There are also
Shapiro steps at n! ¼ ðv1 � v2Þwith an integer n > 1with
a smaller height. In the presence of quenched disorder, the
Shapiro steps occurs at n! ¼ v� (with the reduced units)

due to the periodic passing of vortex lattice through the
defects [27,28]. These steps can be distinguished from
those induced by relative motion of two vortex lattices,
because their resonance condition is different.

The decoupling of composite vortex lattice depends on
the two parameters �2=�1 and �2=�1. Generally the
effect is present in all multiband superconductors.
However for a small disparity between bands in �� and

��, the current Jd is high. There are superconductors with

large disparity among condensates, such as the proposed
liquid hydrogen superconductors due to large mass differ-
ence between proton and electron. To estimate Jd for

MgB2, we take �1 ¼ 13 nm, �2 ¼ 51 nm, �1 ¼ 47:8 nm
and �2 ¼ 33:6 nm at T ¼ 0 K [17], 	� ¼ 10�9 � 	m
[29] and a ¼ 40 nm corresponding to field at B � 1 T.
Then we obtain Jd ¼ 5� 109 A=m2, which is much
smaller than the depairing current. The velocity
of vortex lattice at dissociation transition is v1 ¼ v2 �
3 m=s, which is smaller than the typical Larkin-
Ovchinnikov instability velocity for vortex lattice [30]. In
the presence of defects, to observe the dissociation tran-
sition, one first needs to overcome the pinning potential;
thus, the effective dissociation current is the sum of
the depinning current and the dissociation current Jd for
the clean system.
To illustrate the idea, we have employed the phenome-

nological London approach in Eq. (1), which remains valid
far away from the transition temperature Tc. For tempera-
tures close to Tc, it was shown in Ref. [31] by using the
standard Ginzburg-Landau (GL) model that there is only
one coherence length in two-band superconductors and the
systems behave as single-band superconductors. Thus the
effect of dissociation of composite vortex lattice is absent
near Tc. Far away from Tc, the standard GL model
becomes inapplicable. Recently an extended GL model
which is capable of describing different spatial lengths of
condensate in different bands was derived from a micro-
scopic model [32–34]. The extended GL model reduces to
the London equation in Eq. (1) if high order corrections are
neglected and the amplitudes of superconducting order
parameters are uniform in space. The extended GL
model is also a proper framework to discuss the vortex
dissociation in multiband superconductors, from which the
two phenomenological parameters �� in Eq. (1) may be

calculated.
The dissociation of composite vortex lattice shares some

similarity to that in multilayer superconductors [35] and
also in cuprate superconductors [36–38]. In the latter case,
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FIG. 3 (color online). The same as Fig. 2, but with an ac
current in addition to a dc current.
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vortices in different layers both carry �0 flux and the
dissociation occurs in the real space, while for multiband
superconductors, vortices carry fractional flux and the
dissociation occurs in the band (momentum) space. The
decoupling transition has been observed experimentally
[35–38] and discussed theoretically [25,39,40] decades
ago. The Shapiro steps are also observed in the decoupled
phase in multilayer superconductors [41]. These observa-
tions in multilayer superconductors corroborate the
possible observation of the predicted dissociation of com-
posite vortex in multiband superconductors.

To summarize, we have predicted the dissociation of
composite vortices in two-band superconductors in the
flux flow region because of the disparity in vortex viscosity
and flux of vortex in different condensates. At a small
velocity, the two vortex lattices are shifted with respect
to each other and the composite vortices are deformed. At a
high velocity, the two vortex lattices move with different
velocities resulting in the dissociation of composite vorti-
ces. In the decoupled phase, the flux flow resistivity
increases. The Shapiro steps are induced when an ac
current is applied in addition to the dc current under an
appropriate condition.
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