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Controlling the dynamics of Majorana fermions (MF) subject to time-varying driving fields is of

fundamental importance for the practical realization of topological quantum computing. In this work we

study how it is possible to dynamically generate and maintain the topological phase in cold-atom

nanowires after the temporal variation of the Hamiltonian parameters. Remarkably we show that for a

sudden quench the system can never relax toward a state exhibiting fully developed MF, independently of

the initial and final Hamiltonians. Only for sufficiently slow protocols the system behaves adiabatically,

and the topological phase can be reached. Finally we address the crucial question of how ‘‘adiabatic’’ a

protocol must be in order to manipulate the MF inside the topological phase without deteriorating their

Majorana character.
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Introduction.—The enormous potential of Majorana
fermions (MF) for implementing decoherence-free quan-
tum computation [1] is greatly stimulating their search in
solid state systems. Several different platforms have been
proposed for realizing MF, like fractional quantum Hall
states at filling factor 5=2 [2], vortex cores of p-wave
superfluids [3] and pþ ip superconductors [4], surfaces
of topological insulators coupled to s-wave superconduc-
tors [5], noncentrosymmetric superconductors [6], and
ferromagnetic Josephson junctions [7]. However, despite
such intense theoretical activity, no experimental evidence
of the existence of MF in the above systems has been
provided so far. A promising alternative that should dras-
tically simplify the realization and detection of MF con-
sists in forming one-dimensional (1D) heterostructures
with semiconductors and conventional superconductors
[8,9]. Here the p-wave superconductivity is simulated by
means of spin-orbit (SO) interaction and the system can be
driven into the topological (T) phase (where the MF
appear) by applying a suitable magnetic field. In addition
MF occurring in 2D and 3D networks of these nanowires
are particularly attracting, since they can be adiabatically
manipulated by using tunable gates or by reorienting the
magnetic field [9,10]. Very recently signatures of MF
presence in InSb and InAs nanowires have been reported
[11–14]. Quantum wires hosting MF could also be engi-
neered in trapped ultracold fermionic atoms, by employing
optical Raman transitions to generate effective spin-orbit
coupling and Zeeman fields, and by using the proximity
effect with a bulk molecular Bose-Einstein condensate
[15]. In these systems one can tune the parameters with
high temporal precision and efficiently control the amount
of disorder without spurious relaxation channels due to the
absence of coupling with a bath of degrees of freedom.
Thus they offer a unique possibility to study in a very
clean way the nonequilibrium dynamics of MF following

time-dependent perturbations, and in particular their for-
mation when the system undergoes the topological phase
transition.
In this Letter we study the real-time dynamics of a 1D

quantum wire of finite length in contact with a supercon-
ductor and in presence of SO coupling. The system is
driven out of equilibrium by varying the external magnetic
field by means of different protocols. The formation of MF
is monitored by calculating the evolution of the recently
proposed Majorana order parameter [16]. Remarkably we
show that for sudden variations of the Hamiltonian the
system relaxes toward a nonthermal state that does not
exhibits fully developed MF. Only for sufficiently slow
protocols the system undergoes the topological phase tran-
sition, over a time scale that increases with increasing
length of the wire. Finally we show that the manipulation
of MF inside the T phase must obey precise temporal
constraints in order to preserve the Majorana character.
This is a crucial issue for the practical implementation of
topological quantum computing in utracold atoms.
Model and formalism.—The Hamiltonian of the coupled

wire of length L is given by [9,17]

H¼
Z L

0
dx�yðxÞð�@2x=2m��� i�@x�y þVz�zÞ�ðxÞ

þ�½c "ðxÞc #ðxÞþH:c:�; �y ¼ ðc y
" ;c

y
# Þ; (1)

where �i are the Pauli matrices, c �ðxÞðyÞ annihilates (cre-
ates) an electron of mass m and spin � at position x in the
wire, � is the chemical potential, � is the strength of the
proximity pairing field, and � and Vz are the amplitudes of
SO coupling and Zeeman field, respectively. This model
displays a topologically trivial (TT) phase for Q � �2 þ
�2 � V2

z > 0 and a T phase for Q< 0, the phase transi-
tion occurring at Q ¼ 0 [8,9]. The existence of MF in
the T phase can be probed by considering the Majorana
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polarization [16], defined as the anomalous local density
of states,

Pðx;!Þ ¼ � 1

�
Im

Z 1

0
ei!t

X
�

2ihfc y
�ðx; tÞ; c y

�ðx; 0Þgi; (2)

where the average is taken over the Hamiltonian ground
state j�0i. As discussed in Refs. [16,18], a good order
parameter to detect the T phase can be built from P as

� ¼
Z L=2

0
dxPðx; 0Þ ¼ �

Z L

L=2
dxPðx; 0Þ: (3)

Indeed in the TT phase it holds� ¼ 0, while in the T phase
only the MF contribute to the order parameter yielding
� ¼ 1. The nonanalytic behavior of � at Q ¼ 0 indicates
the occurrence of the phase transition, while values of �
close to 1 signal MF not fully developed. It is worth
observing that for noninteracting fermions [as in the case
of the Hamiltonian in Eq. (1)] the polarization takes the
simpler form [16]

Pðx;!Þ ¼ 2
X
n;�

�ð!� �nÞuðnÞ�� ðxÞvðnÞ
� ðxÞ; (4)

where n denotes the nth eigenstate of the system with

eigenvalue �n and wave function (uðnÞ" , vðnÞ
# , uðnÞ# , vðnÞ

" )

expressed in the basis (c y
" , c #, c

y
# , c ").

The pair of (real) zero-energy MF supported by the
Hamiltonian H in the T phase are located at the two
opposite edges of the wire [8,9] and decay exponentially
into the bulk. The corresponding wave function must obey
the constraint u� ¼ v� (that ensures the particle-
antiparticle equivalence) and can be found by solving the
auxiliary problem [8],

�@2x=2m��þ Vz ���þ�@x

����@x �@2x=2m��� Vz

 !
u"ðxÞ
u#ðxÞ

 !
¼ 0;

(5)

where � ¼ �1. The two choices of � provide the MF
located at the right and left boundary of the wire, respec-
tively. In the following we assume � ¼ 1, because the
calculation with � ¼ �1 follows the same line of reason-
ing. The MF wave function is then obtained by imposing
the ansatz

u"ðxÞ
u#ðxÞ

 !
¼ U"

U#

 !
gðxÞ; (6)

with gðxÞ ¼ e�x=‘ [19]. The characteristic equation for
‘ has in principle four complex solutions for a given ‘.
However, in the T phase (i.e., for Q< 0) and for any
� ¼ �1 only a single solution is real and ensures the
normalizability of the wave function [8]. In addition, it is
straightforward to verify that the allowed ‘ for � ¼ 1 and
� ¼ �1 do coincide, as dictated by symmetry constraints.
The coefficients U� are easily obtained and read

U" ¼ ‘�1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Vz�‘�2

2m ��

�=‘þ�

�
2

s ; U# ¼ ‘�1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
�=‘þ�

Vz�‘�2

2m ��

�
2

s :

(7)

From the above solution we obtain that the Majorana order
parameter� ¼ 2�‘

P
�U

2
� is 1 in the left half-wire and�1

in the right half-wire, as it should be [18].
Real-time evolution.—We now study the real-time

evolution of � after the variation of the external magnetic
field Vz according to different protocols. The explicit
calculations are performed within the tight-binding version
of the Hamiltonian in Eq. (1), which reads

H ¼ XN
i¼1

�v

2
½Cy

i Ciþ1 þ H:c:� ð�� vÞCy
i Ci�

� �

2
ðiCy

i �yCiþ1 þ H:c:Þ þ VzC
y
i �zCi

þ �ðci"ci# þ H:c:Þ; Cy
i ¼ ðcyi"; cyi#Þ; (8)

with N ¼ L=a and a the lattice spacing. The mapping
between the parameters of the continuum and lattice mod-
els is discussed in Ref. [20]. In the following, we express
energies in units of the hopping v and times in units of 1=v.
If Vz ! VzðtÞ the Hamiltonian becomes explicitly time
dependent H ! HðtÞ and the dynamics of the system
is addressed by propagating the equilibrium ground
state j�0i defined below Eq. (2) according to j�0ðtÞi ¼
T exp½�i

R
t
0 dsHðsÞ�j�0i, where T is the time-ordering

operator. The problem is numerically solved by
discretizing the time and calculating the evolution of
j�0i within a time-stepping procedure j�0ðtjÞi �
exp½�iHðtjÞ�t�j�0ðtj�1Þi, where tj ¼ j�t, �t being a

small time step and j a positive integer [21,22]. We have
considered ramplike switching protocols of duration �

bringing the magnetic field from the initial value VðiÞ
z at

t ¼ 0 [with corresponding Hamiltonian Hð0Þ � Hi] to

the final value VðfÞ
z [with Hamiltonian Hðt > �Þ � Hf],

which is maintained constant for t > �, i.e., VzðtÞ¼
	ð�� tÞ½VðiÞ

z þðVðfÞ
z �VðiÞ

z Þt=��þ	ðt��ÞVðfÞ
z . The order

parameter is then extracted by following Ref. [16].
Because energy is not conserved during the temporal evo-
lution, we calculate �ðtÞ by integrating over x the instan-
taneous polarization Pðx; EoptðtÞÞ, where EoptðtÞ is the

minimum expectation value of HðtÞ over the evolved
eigenstates of Hi, denoted by j
nðtÞi [23]. At every time
the states corresponding to the minimum energy are always
two, with the same value of jEoptðtÞj, but with opposite

signs of the eigenvalue due to the symmetry of the prob-
lem. Therefore the two optimal j
optðtÞi [with wave func-

tions u
ðoptÞ
� ðx; tÞ and vðoptÞ

� ðx; tÞ to be inserted in Eq. (4)] are
the best approximation to the pair of MF that the system
can provide at a given time. The fact that EoptðtÞ goes (does
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not go) to zero indicates that any (none) of the initial
eigenstates of Hð0Þ dynamically transforms in a
Majorana state, without meaning that the system chooses
the value EoptðtÞ during the time evolution.

Quench dynamics.—If � ¼ 0þ we have a so-called
sudden quench. We have studied two relevant situations,
namely (i) the system initially in the TT phase and the

value VðfÞ
z such that Q< 0 for the final Hamiltonian

(TT ! T quench), and (ii) Q< 0 both for the initial and
final systems (T ! T quench). The first case serves to
understand how the MF are dynamically formed, while
the second case is crucial to investigate whether the MF
maintain their character after a manipulation of the system
parameters inside the T phase. In Fig. 1 we show the time
evolution of the order parameter in the two cases, for
different values of the size N . Remarkably, if the system
is initially in the TT phase the MF do not form after the
quench, and the order parameter remains close to zero for
any N , displaying temporal oscillations due to the finite
size of the system (Fig. 1, left panel). If instead the system
is initially in the T phase, we see that the MF of Hi are
corrupted by the quench dynamics even if the condition
Q< 0 is maintained at all times, and � approaches finite
values significantly smaller than 1 (Fig. 1, right panel).
Also in this case�ðtÞ displays oscillations which, however,
tend to disappear by increasingN . In order to confirm our
findings, we have checked that EoptðtÞ does not go to zero

(does not remain at zero) for TT ! T (T ! T) quenches.
We have also verified that similar results are also found by
quenching other quantities like the strength of the pairing
field, the SO coupling, or the chemical potential (not
shown). The above findings indicate that after a sudden
quench the initial ground state j�0i does not relax to the
ground state of the quenched Hamiltonian [24–27], and,
more important, that no single-particle eigenstate of Hi

transforms into the MF of Hf.

It has been conjectured [28] that some of the properties
of the nonthermal state that develops after a sudden quench
can be addressed within the so-called generalized Gibbs
ensemble (GGE). The GGE permits us to compute a class
of long-time averages of integrable quenched systems by
means of the special density matrix [28],

�GGE ¼ 1

ZGGE

e
�P

n

�nIn

; (9)

where ZGGE ¼ Tr½e�
P

n
�nIn� and In are a set of integrals

of motion of the quenched Hamiltonian. The weights �n

are fixed by the condition Tr½�GGEIn� ¼ hInit¼0. Thus
one can argue that the average of an observable O after
the quench is obtained as OGGE ¼ Tr½�GGEO�. In the
present case we choose In as the eigenmode occupations

of the quenched Hamiltonian, i.e., In ¼ 
y
n
n where

Hf ¼
P

n�n

y
n
n. As long as only the zero-energy states

contribute to �, the GGE is, in this case, spanned by the
pair of MF. Thus the order parameter calculated within the
GGE takes an elegant analytic expression, being given by
the square modulus of the overlap between the (real) MF of
the initial Hamiltonian and those of the final Hamiltonian,

�GGE ¼
��������X

�

Z L=2

0
dxuðiÞ� ðxÞuðfÞ� ðxÞ

��������2

; (10)

where i and f denote the MF wave functions calculated
with respect to Hi andHf, respectively. As shown in Fig. 1

the long-time average of � after the sudden quench is in
very good agreement with the corresponding quantity cal-
culated within the GGE. For the TT ! T quench the GGE
predicts �GGE ¼ 0 since Hi has no MF; accordingly the
real-time simulations provide values of�ðtÞ close to 0; see
left panel of Fig. 1. In the case of the T ! T quench the
agreement is even more remarkable; see dashed line in
the right panel of Fig. 1. Indeed the oscillations of �ðtÞ
(sizable only for N & 100) are exactly centered around
the value �GGE. Thus we can infer that the GGE provides
accurate predictions of the asymptotic quench dynamics of
the Majorana order parameter.
In Fig. 2 we illustrate the robustness of the T phase after

a T ! T quench. The value�GGE is plotted as a function of

the strength of the initial magnetic field VðiÞ
z , for a fixed

value of the target VðfÞ
z . We see that if�< VðiÞ

z < VðfÞ
z the T

phase is readily corrupted, even for small differences
between the strengths of the initial and final magnetic
fields. This happens in both the continuum and in the

lattice models. If VðiÞ
z > VðfÞ

z , instead, the continuummodel
predicts a significantly more stable T phase, because the
system can afford larger changes in Vz still maintaining
values of � close to 1 (see dashed lines in Fig. 2).
Ramp protocols.—We now investigate the possibility of

generating and maintaining the T phase after an arbitrary
change in the strength of the magnetic field by considering
ramp protocols of finite duration �. In Fig. 3, we plot �ðtÞ
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FIG. 1 (color online). � as a function of time for a TT ! T

quench with VðiÞ
z ¼ 10�6 and VðfÞ

z ¼ 0:2 (left panel), and for a

T ! T quench with VðiÞ
z ¼ 0:2 and VðfÞ

z ¼ 0:3 (right panel). The
rest of the parameters are � ¼ 0, � ¼ 0:1, and � ¼ 0:3. The
dashed line in the right panel represents �GGE calculated as in
Eq. (10). �GGE has been obtained with N ¼ 400, but its value
depends very weakly on N .
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for different TT ! T transitions by varying � andN . It is
seen that for sufficiently slow ramps the topological phase
transition takes place and MF fully develop, in agreement
with the adiabatic hypothesis. We mention, however, that
the validity of the adiabatic theorem is not obvious in the
present contest, since the final Hamiltonian is such that its
square H2

f has a doubly degenerate ground state, i.e., the

pair of MF [29]. In the lower-right panel we also plot
EoptðtÞ. For N ¼ 200 and � ¼ 105 the formation of the

MF is clearly visible as Eopt approaches zero when VzðtÞ
overcomes � (i.e., when Q becomes negative). Still, our
results clearly indicate that the duration � required to reach
� ¼ 1 increases with increasing size. For instance,
�� 103 is required to create MF in a wire of length
N ¼ 50, whereas � increases about 2 orders of magnitude
by enlarging the system to N ¼ 200. Interestingly this
trend is reversed if one considers T ! T transitions. In this
case the larger the size of the wire, the shorter is the ramp
time needed to maintain the Majorana character after the
transformation. In Fig. 4 we show the duration �� required

for T ! T transition to reach a desired target value �� of
the order parameter (averaged over long times) close to 1.
It appears that �� is an overall decreasing function of N
(although with relatively small oscillations) that for the
chosen parameters saturates to the finite value �� � 80

for �� ¼ 0:95 and �� � 60 for �� ¼ 0:9. We have checked
(not shown) that this qualitative behavior does not change
by varying the features of the protocol, thus providing an
explicit measure of adiabaticity for protocols aiming at
preserving MF.
Conclusions.—We have studied the temporal evolution

of MF in driven 1D quantum wires after the variation of the
system parameters according to different protocols. In the
case of sudden quenches, thermalization breakdown is
observed, and the long-time behavior of the Majorana
order parameter � is well described within the GGE.
Remarkably we find that the relaxed state does not display
fully developedMF, no matter the initial Hamiltonian: for a
TT ! T quench the MF are not generated and � remains
close to zero, while for a T ! T quench the MF initially
present get readily corrupted as the system is driven out of
equilibrium. The adiabatic theorem is, instead, recovered
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FIG. 3 (color online). � and lowest energy Eopt as a function
of time for TT ! T transitions with different ramp duration and

wire length. The protocol parameters are VðiÞ
z ¼ 0:01 and VðfÞ

z ¼
0:3, and the rest of the parameters are the same as in Fig. 1. The
discontinuities in �ðtÞ observed for � ¼ 102 are due to dynami-
cal level crossings in the set f"nðtÞg [23].
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FIG. 4 (color online). Ramp duration �� required for a T ! T
transition to reach the asymptotic target value �� ¼ 0:95
(squares) and �� ¼ 0:9 (triangles) as a function of the length

N . The protocol parameters are VðiÞ
z ¼ 0:2 and VðfÞ

z ¼ 0:3, and
the rest of the parameters are the same as in Fig. 1.
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FIG. 2 (color online). �GGE for a T ! T quench as a function

of VðiÞ
z at fixed VðfÞ

z ¼ 0:2 and VðfÞ
z ¼ 0:3 for both the continuum

and the lattice models. The rest of the parameters are the same as
in Fig. 1. We set a ¼ 1 and hence m ¼ 1=v [20]. For the lattice
model we computed numerically Eq. (10) by diagonalizing H
with N ¼ 200 (the result is, however, quite insensitive to the
value of N ), while for the continuum model we used the
analytic wave function in Eqs. (6) and (7).

PRL 110, 087001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 FEBRUARY 2013

087001-4



for extremely slow ramp protocols. In the case of a slow
TT ! T ramp the system undergoes dynamically the to-
pological phase transition within a time scale that increases
by increasing the length of the wire. Finally, we have
provided an explicit estimate of adiabaticity to preserve
MF during T ! T protocols, by pointing out the existence
of precise temporal constraints relevant for the topological
quantum computation in ultracold atoms, in which the
absence of coupling to a bath of degrees of freedom
inhibits external relaxation processes.
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