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We propose a new method for atomic-scale imaging of spatial current patterns in nanoscopic quantum

networks by using scanning tunneling microscopy (STM). By measuring the current flowing from the

STM tip into one of the leads attached to the network as a function of tip position, one obtains an

atomically resolved spatial image of ‘‘current riverbeds’’ whose spatial structure reflects the coherent flow

of electrons out of equilibrium. We show that this method can be successfully applied in a variety of

network topologies and is robust against dephasing effects.
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How does a current flow through a nanoscopic system?
The answer to this question is not only of fundamental
interest for our understanding of quantum phenomena at
the nanoscale but also of great importance for the further
development of nanoelectronics and the continued minia-
turization of electronic devices. In mesoscopic systems,
such as quantum point contacts [1–3], quantum rings [4],
and DNA [5], this question has been successfully answered
by imaging spatial current paths using a scanning probe
microscope (SPM) [1–7]. However, in nanoscopic systems
with sizes of tens of nanometers, this question has only
been addressed theoretically so far [8–10]. The main ex-
perimental challenge here arises from the SPM’s perturb-
ing electrostatic potential, which yields a spatial resolution
that is insufficient to detect the atomic-scale varying
current patterns predicted to exist in nanoscopic systems
[8–10]. Developing an experimental method that allows
atomically resolved imaging of spatial current paths is
therefore of great importance for understanding charge
transport at the nanoscale, opening new possibilities to
explore quantum Hall physics [11] or weak localization
effects [12] in nanoscopic systems.

In this Letter, we propose such a method by demonstrat-
ing that atomic-scale imaging of spatial current paths in
nanoscopic quantum networks can be achieved using scan-
ning tunneling microscopy (STM) [13]. In particular, by
measuring the current flowing from an STM tip into one of
the leads attached to the network as a function of tip
position, one reveals atomically resolved ‘‘current river-
beds’’ whose spatial structure reflects the coherent flow of
electrons out of equilibrium. We show that this method can
be successfully applied in a variety of network topologies
and reproduces even complex current patterns arising from
the presence of constrictions. It is also robust against
dephasing effects, providing correct current images even
in systems where the mean-free path is only a few lattice
constants. Finally, we demonstrate that the form of the
network’s conductance is an experimentally accessible

criterion for the success of the imaging method. Thus,
the proposed STM imaging method provides a promising
new approach for exploring charge transport in nanoscopic
systems.
We study the spatial current patterns in a nanoscale

quantum network that is attached to two leads and
described by the Hamiltonian
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Here, cyr;� and dyr;� create an electron with spin� at site r in
the network and leads, respectively, with t, tl, and th being
the respective hopping elements between nearest neighbor
sites. While the network sites can in general represent
atoms, molecules, or more complex structures, we assume
here that each site contains only a single relevant electronic
level. The last two terms describe a local electron-phonon
interaction in the networkwith a phononmode of energy!0.
For different chemical potentials �L;R in the left and

right leads (see Fig. 1, case I), a spatial current pattern is
obtained by computing the current Ir;r0 between adjacent

sites r, r0 in the network via [14,15]
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FIG. 1 (color online). Position of the chemical potentials of the
leads, the STM tip, and the network for cases I and II.
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where ĜK is the full Keldysh Green’s function matrix of
the entire system. For a noninteracting (g ¼ 0) network,

one has ĜK ¼ ð1� ĝrt̂Þ�1ĝKð1� t̂ĝaÞ�1 with ĝKð!Þ ¼
2i½1� 2n̂Fð!Þ� Im½ĝrð!Þ�. Here, t̂ is the symmetric hop-
ping matrix and the matrices ĝr;a;K contain the decoupled
(t, th ¼ 0) retarded, advanced, and Keldysh Green’s func-
tions of the network sites [with gr ¼ 1=ð!þ i�Þ, � ¼ 0þ]
and leads. The latter are computed using a renormalization
procedure [16]. n̂F contains the Fermi functions of the
network and leads. Below, we use for concreteness
t ¼ th ¼ tl, � ¼ 0:0002t, �� ¼ �L ��R ¼ 10�4t, and
kBT ¼ 10�5t. In the limit �V ¼ ��=e ! 0 and tempera-
ture T ¼ 0, one obtains from Eq. (2) [10]

Ir;r0 ¼ 4NLt
2
h

te2

@
Im½Gr

r;LG
a
L;r0 �j!¼�c

�V; (3)

where �c ¼ ð�L þ�RÞ=2 and NL is the density of states
in the left lead, which is coupled to network site L.

To image the spatial current patterns obtained from
Eq. (2), we compute the current IL;RðTÞ flowing from an

STM tip (held at potential �T) into the left (L) or right (R)
lead as a function of tip position T (see Fig. 1, case II).

Here, H T ¼ �tT
P

r;�ðcyr;�f� þ H:c:Þ describes the elec-

tron tunneling between the STM tip and a single network
site with f annihilating an electron in the tip, and one

appropriately extends ĜK in Eq. (2). To probe the same
states participating in the charge transport as in case I, we
set the bias between the leads to zero, i.e., �L;R ¼ �0,

and require �VT ¼ ð�T ��0Þ=e ¼ �V and �T
c ¼

ð�0 þ�TÞ=2 ¼ �c with �V and �c from case I (see
Fig. 1). Assuming, for example, that the left lead is con-
nected to a single network site L only, one obtains, for
�VT ! 0 and T ¼ 0,

ILðTÞ ¼ 2
e2�

@
t2Tt

2
hNLNTjGr

T;Lj2!¼�T
c
�VT; (4)

where NT is the density of states in the STM tip. Note that,
in contrast to IL, the total tip current Itip ¼ IL þ IR for

�VT ! 0 yields a spatial image of the network’s density of
states at ! ¼ �T

c . In the experimentally realized weak
tunneling limit [13], the STM only probes but essentially
does not perturb the network’s electronic structure and is
thus less intrusive than the SPM imaging method [1–7].

We begin by considering the spatial current pattern Ir;r0

obtained from Eq. (2) (case I) in a noninteracting, semi-
infinite network with Ny ¼ 15 rows that is connected to a

narrow left lead through a single site L (see Fig. 2). For
�c ¼ 0 [Fig. 2(a)], the Fermi velocity of the states
involved in the current transport points along the lattice
diagonal, resulting in a diagonal current path that bounces
off the sides of the quantum network [10]. A comparison of
this current pattern with IL obtained from Eq. (4) (case II)
shown in Fig. 2(b) demonstrates that IL provides an atomi-
cally resolved image of the current paths in the network, a
result that also holds when the network is gated, and �c is
shifted, as exemplified in Figs. 2(c) and 2(d), where we

present the spatial current pattern and IL, respectively, for
�c ¼ 2:4t.
A physical understanding of the good agreement

between Ir;r0 and IL can be gained by considering how

the current flows from the STM tip through the network
into the left lead. Consider, for example, the case when the
STM tip is located above a network site that is part of the
coherent current riverbed of Fig. 2(a). In this case, as
shown in Fig. 3(a), the current injected from the STM tip
utilizes the current riverbed, resulting in a large IL flowing
from the tip to the left lead. In contrast, when the tip is
positioned away from the riverbed, as shown in Fig. 3(b),
the current injected by the STM tip cannot flow to the left
lead but only to the wide right lead (at infinity), since only
the latter can be connected to the tip location by a diagonal
path. While the spatial form of current riverbeds varies
with the position of the leads and the gating of the network,
this physical explanation for the success of the imaging
method holds for all cases we have considered. A more
technical understanding of the good agreement between
Ir;r0 and IL is obtained by noting that their analytical

expressions in Eqs. (3) and (4) involve (different) combi-
nations of the real and imaginary parts of the nonlocal
Green’s function Gr

r;L. A spatial plot of these two quanti-

ties shown in Figs. 3(c) and 3(d) [for the case of Fig. 2(a)]
reveals that their spatial structures are similar on the atomic
scale. As a result, IL [see Eq. (4)] is strongly peaked
in those regions where Ir;r0 � 0 (the latter being predomi-

nantly determined by ReGr
r;L [10]), thus explaining

the good spatial agreement between IL and Ir;r0 .
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FIG. 2 (color online). (a) Spatial current pattern Ir;r0 and
(b) ILðTÞ for �c ¼ 0. (c) Ir;r0 and (d) ILðTÞ for �c ¼ 2:4t. All
currents are normalized.
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The same conclusion also holds for the case of �c ¼ 2:4t
in Figs. 2(c) and 2(d). As follows from Eqs. (3) and (4) and
is confirmed by an extensive survey of networks, a spatial
structure of ReGr

r;L and ImGr
r;L that is similar on the

atomic scale is a sufficient condition for IL to provide an
atomically resolved image of current paths (see the dis-
cussion below).

The STM method also images more complex current
patterns, which occur, for example, in systems with mul-
tiple constrictions, as shown for an infinitely long wire
with Ny ¼ 13 rows in Fig. 4(a). While in the left and right

regions of this network the current follows a diagonal path,
a more complex current pattern exhibiting circulating cur-
rent loops [10] exists in the central region. As shown in
Fig. 4(b), IL correctly images the current pattern in the
central and right regions but reflects the spatial form of the
density of states at �T

c in the left region. Conversely, IR
(not shown) correctly images the spatial current pattern
only in the left and central regions. To understand why IL;R
reproduce the current pattern only in parts of the system
(while together, IL;R yield a complete image of the current

paths), we note that, when the tip is located to the right of
constriction 1 [Fig. 4(b)], the current flowing from the tip
into the left lead needs to pass through the narrow opening
in constriction 1, whose role is therefore similar to that of
the narrow left lead in Fig. 2(a). As a result, IL is large
whenever the tip is located above the current riverbed of
Fig. 4(a). In contrast, in the region left of constriction 1, the
tip, independent of its location, can always be connected to
the wide left lead (at infinity) by a diagonal path, and IL �
Itip therefore images the density of states. We thus con-

clude that, in order for IL to correctly image the current
pattern in a given region, the number of allowed current
channels needs to be restricted, either through the presence
of a constriction, as in Fig. 4(b), or of a narrow lead, as in
Fig. 2(b). Similar conclusions also hold for more complex
network topologies, such as the infinitely long cylinder of

circumference Ny ¼ 54 shown in Fig. 5(a) that possesses

two constrictions rotated by a relative angle of � around
the cylinder axis. Here, IL [see Fig. 5(b)] correctly images
the winding current pattern only in the central and right
cylinder regions, while IR provides the complementary
current image.
To make the imaging method a versatile tool in the study

of nanoscopic networks, it is necessary to identify an
experimentally verifiable criterion for the agreement (or
the lack thereof) between IL and the current pattern. Such a
criterion is provided by the network’s overall conductance
Gð�cÞ, as can be exemplified by varying the hopping tL
between sites in constrictions 1 and 2 [see the yellow dots
in Fig. 4(c)] and the central region of the network shown in
Fig. 4. As discussed above, for tL ¼ t, the STM method
provides a correct spatial image of the current pattern,
while, at the same time, the conductance around �c ¼ 0
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FIG. 3 (color online). (a), (b) Spatial pattern of current flowing
from the STM tip to the leads for two different tip positions
(indicated by yellow triangles), with �T ¼ 5� 10�5t and
�T

c ¼ 0. (c) ReGr
r;L and (d) ImGr

r;L for the case of Fig. 2(a).
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FIG. 4 (color online). (a) Spatial current pattern and (b) ILðTÞ
for �c ¼ 0. (c) ILðTÞ for tL ¼ 0:2. The scales in (b) and (c) are
the same. Constrictions are shown in vertical gray bars.
(d) Gð�cÞ for several tL.
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[see arrow in Fig. 4(d)] is close to the (maximal) quantum
of conductance, varying only weakly with �c. However,
with decreasing tL, the agreement between the STM image
and the actual current pattern (the latter remaining quali-
tatively unchanged) worsens in the central region and is
completely lost around tL ¼ 0:2t [see Fig. 4(c)]. This
breakdown is accompanied by a qualitative change in
Gð�cÞ: It becomes sharply peaked around �c ¼ 0, and
its overall magnitude decreases. Both changes possess
the same origin: For tL ! 0, only a single state contributes
to the charge transport at �c ¼ 0 in the central region,
implying that Gð�cÞ becomes sharply peaked while the
overall magnitude of ImGr

r;Lð�cÞ scaling with ��1

becomes much larger than that of ReGr
r;Lð�cÞ. As a result,

IL is dominated by ImGr
r;L and therefore does not correctly

image the current pattern, whose spatial form is in general
determined by ReGr

r;L [10]. We find that the onset for the

breakdown of the imaging method occurs when the widths
of the peaks in Gð�cÞ become less than the separation
between peaks [see tL ¼ 0:5t in Fig. 4(d)]. In contrast,
even for tL ¼ 0:2t, IL still correctly images the current
pattern in the right region since, due to its semi-infinite
nature, ImGr

r;L does not scale with ��1 for tL ! 0 and the

overall magnitudes of ImGr
r;L and ReGr

r;L remain approxi-

mately equal (although the overall magnitude of IL rapidly
decreases for tL & 0:2t). This relation between the success
of the imaging method and Gð�cÞ holds for all networks
we have considered: Whenever Gð�cÞ is close to the
maximal allowed conductance and varies weakly around
a given�c, the STMmethod yields a correct current image
in the entire network. On the other hand, if Gð�cÞ is
sharply peaked (or reduced from its maximal value due
to dephasing, as discussed below), the agreement breaks
down in at least part of the network. Thus, Gð�cÞ provides
an experimentally verifiable criterion for the success of the
imaging technique.

To investigate how the ability of IL;R to image current

patterns is affected by interactions and the resulting dephas-
ing, we consider the effects of the electron-phonon interac-
tion in Eq. (1) [17,18]. The full solution of the self-consistent

Dyson equation for ĜK;r for generalg,!0, and temperatureT
is currently beyond our computational abilities and thus
reserved for future work. However, in the high-temperature
approximation kBT � !0 (with!0!0) [19], the fermionic
self-energy greatly simplifies to �K;r ¼ �GK;r, where � ¼
g2½1þ 2nBð!0Þ�, and the Dyson equation can be numeri-
cally solved even for larger networks [10]. In Fig. 6, we plot
the spatial current pattern and IL, for a (17� 5) network
attached to a narrow and awide lead, and two different values
of the dephasing parameter �. In general, with increasing �,
the current pattern evolves from that of the ballistic limit to
that of a classical resistor network [10]. For small � up
to �� 0:002t2 [corresponding to a mean-free path of
l � 13a0, where a0 is the lattice constant], with conduc-
tance G � 0:99ð2e2=hÞ, IL [Fig. 6(b)] correctly images Ir;r0

[Fig. 6(a)], which still largely resembles the current pattern
of the quantum (� ¼ 0) limit. For larger � ¼ 0:032t2 with
l � 3:3a0 andG � 0:93ð2e2=hÞ, both Ir;r0 [Fig. 6(c)] and IL
[Fig. 6(d)] become spatially more diffuse; however, ILðTÞ
still reproduced the main features of the current pattern even
for such a small mean-free path. This demonstrates that the
STM imaging technique is rather robust against dephasing
effects even for mean-free paths as small as a few lattice
spacings. Increasing � even further results in an overall
suppression of Gð�cÞ and an increasing disagreement
between IL and Ir;r0 , in agreement with the criterion formu-

lated above.
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FIG. 5 (color online). (a) Spatial current pattern for �c ¼ 0
and (b) ILðTÞ for a cylinder (cut along the axis and flattened out).
Constrictions are shown in vertical gray bars.
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FIG. 6 (color online). Spatial current pattern and IL for (a),
(b) � ¼ 0:002t2 and (c), (d) � ¼ 0:032t2, with �L ¼ ��R ¼
0:03t, kBT ¼ 5� 10�6t ¼ 10!0, and � ¼ 10�16t.
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