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Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully

solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is

known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes

the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald

smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of

the static friction force, which for a soft lubricant is predicted to decrease as fm þ�f=A� for increasing

contact area A, with � > 0. Our main finding is that the value of fm, controlling the survival of stick slip at

large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant

sliding are presented, which verify this theory.
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Boundary friction of sliding crystal surfaces across
atomically thin solid or nearly solid lubricant layers, of
considerable conceptual and practical importance, also
constitutes an open physics problem, because the uncertain
occurrence of stick slip makes the prediction of the overall
frictional regime—stick-slip or smooth sliding—rather
uncertain [1,2]. While for hard solid lubricants the answer
is known, namely stick slip for commensurate and crystal-
lographically aligned interfaces or smooth sliding for lat-
tice mismatched or misaligned interfaces [3], it is not so
for soft solid lubricants. The latter, with shearing occurring
inside the lubricant rather than at the surface-lubricant
interface, represent the commonest case, realized at room
temperature in, e.g., commercial machine oils confined in
between metallic surfaces. The possibility of smooth
sliding would be especially relevant, because of the accom-
panying large drop of kinetic friction, often a very desir-
able outcome. The crucial controlling quantity is the
magnitude of static friction fs—the maximum pulling
force reached before slip. So long as fs is finite there
will be stick slip; when fs drops to zero, there can only
be smooth sliding. Realistic molecular dynamics (MD)
simulations of lubricants confined between atomically
flat surfaces generally indicate that stick slip prevails for
soft lubricants, with consequently high kinetic friction.
However, while in smooth sliding the kinetic friction per
unit area is essentially size independent, its static counter-
part fs may decrease with increasing contact area A [1,2].
Despite the increased computer power, the simulated

system sizes [5–8] are still far too small to establish con-

clusively whether in the limit of mesoscopically large size

the static friction will remain finite, and stick slip will

survive with large kinetic friction, or if it will vanish so

that smooth sliding and low dynamic friction will even-

tually prevail. The time-honored approach borrowed from

equilibrium statistical mechanics to this type of question is

finite-size scaling [9]. One can, for example, double repeat-

edly the size of the simulation cell and compare the change

in the results with some analytically predicted size depen-

dence from theory. Given a good scaling prediction, a few

simulated sizes are often sufficient to establish the large-

size limit with reasonable accuracy, and, in particular,

whether static friction will drop to zero and stick slip

will disappear, or not.
In this Letter we solve this question, first by deriving a

size scaling law for static friction, and then showing that

it fits realistic MD simulations yielding a well-defined

answer. Our end result is that (i) the predicted drop of the

size-dependent part of the static friction per atom fs is

inversely proportional to the linear size of the contact

(i.e., to A1=2), but that (ii) its predicted large-size limit is

nonzero, so that stick slip will generally survive in soft

solid boundary lubrication.
Scaling theory.—To start off the theory, we inspect first

the dynamics of previous MD simulations of sliding over

soft solid lubricants [2,10,11]. These simulations indicate,

very reasonably, that unlike hard lubricants where sliding
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occurs at the interfaces, plastic motion within the soft
lubricant nucleates typically at some weak point well
inside the lubricant film, such as a point defect, a disloca-
tion, a local incommensurability, etc. (similarly to the
‘‘weakest-link hypothesis’’ of fracture mechanics, e.g.,
see Refs. [12,13] and references therein). The static friction
force fs (per substrate atom, i.e., fs ¼ �sLxLy=Ns, where

�s is the shear stress, Lx and Ly are the sides of the

rectangular simulation cell, and Ns is the number of sub-
strate surface atoms) depends on the given initial (frozen)
configuration. For a given size A ¼ Lx � Ly of the simu-

lation cell, different realizations of the initial configuration
will give different fs values fs1 < fs2 < � � � , where a

given value fs i is realized with probability pðAÞ
i . Now

suppose we double the simulation cell. Slip motion will
again start at the weakest point wherever it is, in either half
of the doubled cell. Assuming that the new (larger) contact
does not develop new thresholds, the probability that the
doubled cell fails at threshold fs i equals the sum of the
probability that failure occurs precisely at this threshold
fs i in both halves plus the probability that in one half the
threshold is fs i and in the other half it is some larger fs j:

pð2AÞ
i ¼ ðpðAÞ

i Þ2 þ 2pðAÞ
i

X
j>i

pðAÞ
j : (1)

The factor 2 accounts for the the two symmetric realiza-
tions of fs j and fs i in the two halves.

By iteration of Eq. (1), we can find the probability pð�AÞ
i

for larger and larger cell size �A � 2nA, with n ¼ 0; 1; . . .
Given the resulting distribution, one can calculate the
average static threshold for the �A cell by

�f sð�Þ ¼ X
i

pð�AÞ
i fs i: (2)

To illustrate this approach, consider the simple instructive
example where only two thresholds fs1 ¼ fm and fs2 ¼
fm þ�f > fm occur, with probabilities p1 and p2. For the
doubled cell, we have four possible threshold realizations:
(fs1, fs1) with probability p2

1, (fs1, fs2) with probability
p1p2, (fs2, fs1) with probability p2p1, and (fs2, fs2)
with probability p2

2. Accordingly, the doubled cell fails
at the lower threshold with probability p2

1 þ 2p1p2,
and at the upper threshold with probability p2

2. Indicate

with pðAÞ
1 ¼ 1� � and pðAÞ

2 ¼ �< 1. The iteration chain

is pð2�AÞ
2 ¼ ½pð�AÞ

2 �2, with solution pð�AÞ
2 ¼ ��, and thus

pð�AÞ
1 ¼ 1� ��. Accordingly, the average static friction

approaches the minimum threshold fm exponentially in �:

�fsð�Þ � fm ¼ ���f ¼ e� ln��f: (3)

When we replace the discrete thresholds fs i with a more

realistic continuous distribution with probability PðAÞ
c ðfsÞ,

the first, quadratic, contribution in Eq. (1) can be neglected,
and the iteration equation takes the form

Pð2AÞ
c ðfsÞ ¼ 2PðAÞ

c ðfsÞ
Z 1

fs

PðAÞ
c ðf0sÞdf0s: (4)

Figure 1(a) illustrates an example of the numerical itera-
tion of this equation. Simulations suggest that for large �

the distribution Pð�AÞ
c ðfsÞ tends to approach some universal

shape, with little dependency on the small-size distribution

PðAÞ
c ðfsÞ, once it is rescaled appropriately. A similar scaling

behavior was proven for the strain distributions of the
(related) fiber-bundle models [14–18]. In these models
the conditions for the emergence of a critical point, i.e., a
finite stress in the large-scale limit, were investigated under
the assumption of a nonzero single-fiber breaking proba-
bility for arbitrarily small stress. Here instead we consider
that more generally the minimal contact (‘‘single fiber’’)
distribution of unpinning forces fs can start off at a mini-
mum fm, which can be nonzero. Iteration of Eq. (4) guar-
antees that for any contact size �A the distribution

Pð�AÞ
c ðfsÞ vanishes below the same fm as PðAÞ

c ðfsÞ: scaling
preserves fm. To address the scaling of the distribution
above fm, it is convenient to introduce f ¼ fs � fm. Let us
assume that at large � the normalized probability distribu-
tion scales as

Pð2�AÞ
c ðfÞ ¼ aPð�AÞ

c ðafÞ; (5)

where a > 1 is a constant. By substituting Eq. (5)

into Eq. (4), for the large-size distribution gðfÞ¼
lim�!1���Pð�AÞ

c ð���fÞ, with � ¼ log 2a, we obtain
the following equation:

FIG. 1 (color online). Iteration of Eq. (4) starting from a

sawtooth initial distribution PðAÞ
c ðfÞ ¼ 2f�ðfÞ�ð1� fÞ, where

�ðxÞ is the Heaviside step function. Inset (a) shows successive

iterations of Pð�AÞ
c ðfÞ for � ¼ 1; 2; 4; 8; . . . Inset (b) displays the

scaled distribution ���Pð�AÞ
c ð���fÞ compared to the infinite-

size solution (10). The main graph shows the average static
friction �f excess (above the minimum fm) as a function of
contact size.
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agðafÞ ¼ 2gðfÞ
Z 1

f
gðf0Þdf0; (6)

or

agðafÞ
gðfÞ ¼ 2

Z 1

f
gðf0Þdf0: (7)

Differentiating both sides with respect to f, we get

a2g0ðafÞgðfÞ � agðafÞg0ðfÞ þ 2g3ðfÞ ¼ 0: (8)

The solutions of this equation depend on a single feature of
the distribution gðfÞ, namely its small-f behavior. More
precisely, assuming that gðfÞ ¼ P

k¼k0
ckf

k, with k0 >�1,

we have that

a ¼ 2� with � ¼ ð1þ k0Þ�1; (9)

gðfÞ ¼ ck0f
k0 exp

�
� ck0f

1þk0

1þ k0

�
(10)

solve Eq. (8). Figure 1(b) demonstrates the approach of the
scaled distributions to the function gðfÞ ¼ f exp ð�f2=2Þ
(with a ¼ ffiffiffi

2
p

) obtained by starting off with an initial

distribution PðAÞ
c ðfÞ ¼ 2f�ðfÞ�ð1� fÞ, i.e., with k0 ¼ 1,

c1 ¼ 2.
The scaling theory makes the following predictions:

(i) as scaling preserves fm, it is possible to predict the

minimum threshold fm from an evaluation of PðAÞ
c ðfÞ at the

smallest contact size; (ii) the iteration defined by Eq. (4)
preserves the leading term in the f power expansion of

PðAÞ
c ðfÞ above fm; (iii) regardless of the overall shape of

the small-size threshold distribution, for large size the
distribution acquires the ‘‘universal’’ shape of Eq. (10);

(iv) its width �fð�AÞ scales down as an inverse power law
of�; (v) this power law is dictated uniquely by the leading
power law with which the arbitrary-size threshold distribu-
tion behaves for fs near fm; (v) as� increases, the average
friction force �fs approaches fm according to the law

�fsð�Þ � fm ’ ½ �fsð� ¼ 1Þ � fm����: (11)

In the example of Fig. 1, this relation yields a mean excess
static friction scaling as the inverse square root of size
�fs � fm / ��1=2.
Simulation.—To validate our prediction with MD simu-

lations, we use our previously developed model [2,10,11].
Each of the two substrates is modeled by two atomic
layers, one rigid and one deformable. In the minimum
size simulation of contact area A, these substrates are
composed by 12� 11 atoms arranged in a square lattice.
The space between the substrates is filled by three incom-
plete layers of lubricant atoms (to prevent crystallization of
the lubricant, we put approximately 90% of the atoms
which would complete 3 perfect monolayers). All atoms
interact according to the Lennard-Jones potential. The
strength of the lubricant-lubricant interaction is Vll ¼ 1=9

(in dimensionless ‘‘natural’’ units, n.u., defined for example
in Refs. [2,10]), while the lubricant-substrate interaction is
much stronger, Vsl ¼ 1=3. The equilibrium distance of the
Lennard-Jones lubricant-lubricant interatomic potential is
rll=as ¼ 3:95=3 (i.e., the solid lubricant is incommensu-
rate with the substrate). These parameters correspond to a
soft lubricant. Once the thin soft lubricant film is inter-
posed between the sliders, sliding takes place inside the
lubricant (as opposed to hard lubricants where the sliding
would take place at the interfaces) and the film melts
during sliding, realizing the melting-freezing mechanism
of stick-slip motion. The bottom substrate is kept fixed,
while the rigid top slider layer is pressed with a load of
0.1 n.u. per substrate atom (representing a pressure in the
order 100 MPa if the model represented a noble gas solid
lubricant between metal surfaces) and driven through a
spring of elastic constant k ¼ 3� 10�4 n:u. per atom
with a velocity v. We carry out simulations at driving
velocities v ¼ 3� 10�3 � 3� 10�2 n:u. These velocities
are sufficiently small that the system exhibits stick-slip
motion, as illustrated in Fig. 2(a). We carry out runs of
duration exceeding 107 n:u. for the smallest-size system
(12� 11), representing � ¼ 1. By extracting the ‘‘static
friction’’ thresholds fs i marked by circles in Fig. 2(a) in
correspondence to the peaks in fðtÞ preceding each slip
event, we obtain a set ffs ig sampling the probability dis-

tribution PðAÞ
c ðfsÞ. We evaluate this distribution by means

of a histogram of 1063 thresholds obtained during a long
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FIG. 2 (color online). (a) The time evolution of the spring
force during a segment of the simulated stick-slip dynamics of
the 12� 11 substrate model driven at speed 0.01 n.u., with an
applied load of 0.1 n.u. per rigid substrate atom; circles mark the
stick-to-slip transitions where the individual static-friction
thresholds fs i are extracted. (b) The probability distribution of

the static-friction thresholds PðAÞ
c ðfsÞ as estimated by a histogram

of the fs i values. A dotted line marks the mean value �fs, and an
arrow marks the estimated fm.
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run, and shown in Fig. 2(b). Although the detailed behavior
near the minimum threshold fm is naturally affected by
limited statistics, the data are consistent with a distribution
staring off at fm ’ 0:0075, with an approximately linear
slope (k0 ¼ 1), which produces an exponent � ¼ 1=2.

From the threshold distribution PðAÞ
c ðfsÞ we extract the

mean value �fs ¼ 0:0397, marked by a dotted line in
Fig. 2(b).

Having thus characterized the small-area sliding behav-
ior, we proceed to increase the area in order to track the
size-induced changes. The cell is successively increased
to � ¼ 2 ¼ 2� 1, 3 ¼ 3� 1, 4 ¼ 2� 2, 6 ¼ 3� 2,
9 ¼ 3� 3, 12 ¼ 4� 3, 16 ¼ 4� 4, 20 ¼ 5� 4, and
25 ¼ 5� 5. The results are presented in Fig. 3. As
expected, the average static friction decreases with system
size. As was noted, it would not be feasible to extract a
large-size limit in the absence of a scaling law. We find that
scaling law (11) with � ¼ 1=2 fits the simulation results
with reasonable accuracy. The static friction tends to a
finite large-size value fm > 0, and therefore stick slip
will survive at macroscopic size.

Discussion.—We just arrived at the conclusion that once
fm starts off nonzero, fs will converge to fm > 0 and static
friction will not disappear in the large-size limit. One
should, however, not jump to the conclusion that once
the static friction threshold distribution starts from zero,
fm ¼ 0, the amplitude of stick slip jumps of fðtÞ will drop
to zero, and stick-slip friction will necessarily disappear in
the limit of large contact area. There are two reasons why
this is not generally true. The first reason resides in statics,

and follows from elasticity of the substrate. The size �c of
a domain that can be considered as rigid and slides as a
whole, is determined by the elastic correlation length
[4,19]. Therefore, the average static friction force should

reach a plateau for sizes L ’ A1=2 * �c [20]. The second
reason follows from kinetics. When the sliding motion
starts off at some weak contact site, it may either die off,
or spread over the whole interface with some speed c. This
process takes a finite time �� L=c. If at a given driving
velocity v, � is of order or larger then the time between
successive slips �ss � fsðLÞ=ðkvÞ, then the local sliding
initiated by this weak contact will lose its role and effec-
tiveness for all sizes L> �d, where �d ¼ ðc=vÞfsð�dÞ=k;
hence, the static friction will saturate rather than decrease
further to fm as predicted by the scaling theory Eq. (11).
This leads us to ask more generally what is lost in the

scaling approach. We assumed that the doubled cell has the
same set of thresholds ffs ig as the original one. Yet a larger
cell may develop new collective excitations, e.g., a dislo-
cation loop of a size >L. However, if the original cell A is
large enough, we may still safely extrapolate its distribu-
tion to a mesoscopic size, where the master equation
approach [21] is applicable.
Another situation where a different behavior is expected

is the Aubry incommensurate superlubric state, which has
zero static friction threshold in the infinite system [22].
That state, corresponding to fm ¼ 0 in our theory, occurs
preferentially for hard lubricants whose interior does not
develop a shear band, and which do not melt during sliding.
Experimentally, the scaling behavior predicted here

could be probed by comparing friction-force microscopy
realizations with tips of different curvature radii [23,24]
sliding on a surface covered by a lubricant close to its
melting points, e.g., an octamethylcyclotetrasiloxan or an
ionic liquid at room temperature, or a noble-gas layer at a
cryogenic temperature. The technological bottom line
lesson, finally, is that stick slip could be attenuated by
reducing the smallest threshold force, for example, by
promoting extra defects in the lubricant film by additives
or other means.
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