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High Reynolds number magnetohydrodynamic turbulence in the presence of zero-flux large-scale

magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow

configurations, the energy dissipation rate � follows the scaling � / U3
rms=‘ even when the large-scale

magnetic field energy is twenty times larger than the kinetic energy. A further increase of the magnetic

energy showed a transition to the � / U2
rmsBrms=‘ scaling implying that magnetic shear becomes more

efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations

form nonturbulent helicity condensates that deviate from these scalings. Weak turbulence scaling was

absent from the investigation. Finally, the magnetic energy spectra support the Kolmogorov spectrum

k�5=3 while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k�3=2 as observed in

the solar wind.
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One of the most fundamental questions that can be asked
about an out-of equilibrium system is the relation between
the energy injection or dissipation rate �, and the amplitude
of the fluctuations u‘. In hydrodynamic turbulence such
estimates are clear and the desired relation comes from the
balance between the injection rate and the flux of energy to
the small scales due to nonlinear interactions. Such con-
siderations lead to the strong turbulence scaling

� / Cu2‘=�nl / Cu3‘F=‘F (1)

for Re / u‘F‘F=� � 1 [1,2]. Here � is the kinematic

viscosity, u‘ is the amplitude of the velocity fluctuations
at the scale ‘, and �nl ¼ ‘=u‘ the eddy turn over time (or
else the nonlinear time scale). The index F indicates that
the quantity is measured at the forcing scale. Constancy of

the energy flux over all scales ‘ leads to u‘ / �1=3‘1=3 that
results in the Kolmogorov (K41) prediction for the energy

spectrum EðkÞ / �2=3k�5=3 [3].
The situation becomes more complex when linear wave

terms are present introducing new time scales in the sys-
tem. Magnetohydrodynamic (MHD) turbulence is such an
example for which turbulent eddies and (Alfvén) waves
coexist with many applications in industrial and astrophys-
ical flows [4,5]. When a flow is coupled to a uniform
magnetic field B0 fluctuations travel parallel or antiparallel
to the magnetic field lines with crossing time �A /
�‘k=B0. (The indexes ? , k indicate the direction perpen-

dicular and parallel to the magnetic field, respectively.)
Depending on the ratio �nl=�A different regimes of
turbulence are expected [6–8]. If �nl=�A � 1 the role
of the waves becomes insignificant and one returns
to the Kolmogorov scaling relation (1). If however
�nl=�A�1 the scaling is modified due to the sweeping
effect (see Ref. [6]). Then the system can be treated

within the framework of wave turbulence theory [9].
Phenomenological arguments with (‘? � ‘k � ‘) lead to

the relation

� / C
u2‘
�nl

�
�A
�nl

�
/ C

u4‘F
B0‘F

: (2)

Constancy of energy flux over all scales then leads to

the isotropic Iroshnikov-Kraichnan spectrum EðkÞ /
ð�B0Þ1=2k�3=2 [10,11]. However isotropy is not a valid
assumption. Using �nl � ‘?=u‘ in Eq. (1) and restricting
to modes for which the turbulence is strong (�nl & �A) the

anisotropic energy spectrum EðkÞ / �2=3k�5=3
? with kk �

�1=3k2=3? =B0 is obtained [12]. Assuming the proportionality

coefficient to depend on scale C / ‘1=4? in Eq. (1), an

anisotropic Iroshnikov-Kraichnan spectrum EðkÞ /
�2=3k�3=2

? can be obtained [13]. If instead we make the

same substitutions for �nl and �A in Eq. (2) (see Ref. [14])

we obtain the weak turbulence spectrum EðkÞ /
fðkkÞk1=2k ð�B0Þ1=2k�2

? (see Ref. [15] for exact result).

These spectra have been tested by direct numerical
simulations (DNSs) in periodic boxes with a nonzero mag-
netic flux through one side (� ¼ R

b � ds � 0). In strong
turbulence, agreement on the exponent of spectrum has not
been reached [16,17]. The weak turbulence spectrum has
been produced in DNSs only when the kk ¼ 0 modes are

not forced [18,19]. If they are forced and B0=L � u‘=‘
then the system becomes quasi-2D with an inverse cascade
of energy (thus neither relation (1) or (2) applies) [20].
In all regimes (strong, weak, and quasi-2D) the principle
role for cascading the energy is played by the weakly
varying modes in the direction of B0, and thus the observed
scaling depends on L and ‘F.
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The sensitivity of the dynamics on the forcing length and
box size poses questions on the applicability of these
results in more realistic flows with magnetic fields BL

that vary over large length scales L. BL is typically
approximated as uniform provided that the turbulent
energy remains in much smaller scales. The validity of
this approximation, however, is in doubt since small scale
variations ‘? � L couple to large-scale parallel variations
‘k � BL‘?=u‘. If BL is strong enough, ‘k can be as large as
L and thus turbulence can depend on the topology of the
large-scale magnetic fields. As a result, based on the value
BL alone we cannot a priori decide if turbulence falls in the
weak, strong, or a quasi-2D turbulence regime. Another
drawback of modeling large-scale fields as uniform fields
is that triple periodic boxes with finite magnetic flux do not
conserve magnetic helicity, one of the invariants of the
ideal MHD equations. For these reasons, MHD turbulence
with zero-flux large-scale fields needs to be investigated.

To study MHD turbulence in the presence of large-scale
magnetic fields we employ high resolution direct numeri-
cal simulations of the MHD equations:

@tuþ u � ru ¼ b � rb�rPþ �r2uþ Fu; (3)

@tbþ u � rb ¼ b � ruþ �r2bþ Fb; (4)

in a triple periodic box of size L ¼ 2�. Here u is the
velocity field and b the magnetic field. Both fields satisfy
r � u ¼ r � b ¼ 0 and hui ¼ hbi ¼ 0, where the angular
brackets stand for spatial average. � is the viscosity and �
the magnetic diffusivity. Fu is an external mechanical body
force, while Fb ¼ r� E where E is an external electro-
motive force. Fu and Fb are both solenoidal functions
varying randomly and independently in time with time
correlation �. Fu is acting only on wave numbers with
jkj ¼ ku ¼ 2 and is nonhelical: hFu � r � Fui ¼ 0. Fb is
acting only in the largest scale of the system jkj ¼ kb ¼ 1,
and in general has nonzero helicity. All the parameters of
the runs can be found in Table I. For the simulations a
pseudospectral code was used [21,22] on grids of size 5123

(runs A1–A13) and 10243 (runs B1–B3).
In a typical helical run all quantities grow initially up to

a point when dissipation rates and kinetic energy reach a
steady state while the magnetic energy is still increasing
slowly. During this time the magnetic field is composed of
a large-scale helical component BL with jkj ’ 1 that con-
tains most of the magnetic energy and small scale turbulent
fluctuations b of amplitude b� u. Thus magnetic energy
EM provides a measure of the large-scale field EM ’ 1

2B
2
L,

while kinetic energy EK provides a measure of the turbu-
lent fluctuations. The growth of BL depends on the ampli-
tude and the helicity of the magnetic forcing. The evolution
of EK and EM of the large resolution runs can be seen in
Fig. 1. Due to the slow increase of the magnetic energy it is
possible to perform short time averages (over a few turn
over times) and obtain global averaged quantities for

TABLE I. Table with the parameters of all runs. The numbers
in the first four columns are the input parameters given by G 	
hFu

2i1=2=�2k3u the Grashof number, M 	 hFb
2i1=2=hFu

2i1=2 the
ratio of magnetic to mechanical forcing, H 	 hFb � r � Fbi=
hFb

2ikb the relative helicity of the forcing and St 	 �f=� the

Strouhal number where �f 	 1=ðhFu
2ik2uÞ1=4. M ¼ 0 imply

dynamo runs. The Prandtl number Pr 	 �=� for all runs was
set equal to 1. The last columns give the measured parameters
Re 	 hu2i1=2=�ku the Reynolds number and R� 	
hu2i1=2=�hðr � uÞ2i1=2 the Taylor Reynolds number. R� 	
hu2i1=2�=� (with �2 	 hu2i=hðr � uÞ2i) the Taylor Reynolds
number. The last column gives the range of values obtained by
� 	 EM=EK, the ratio of magnetic to kinetic energy. The
simulations named A1–A13 were carried out in a grid of size
5123 while the simulations named B1–B3 were carried out in a
grid of size 10243. The third 10243-grid simulation started with
the parameters of B30 and run up to t ’ 24 turn over times �u 	
1=kuhu2i1=2. afterwards it was continued wit the parameters B3.

Runs G1=2 M H St�1 Re R� �

A1 356 0.00 � � � 0.50 580 157 0.4

A2 1666 0.10 0.59 0.01 905 181 0.7

A3 2500 0.00 � � � 0.01 1331 206 0.7

A4 1666 1.00 0.00 0.01 1064 170 1.4–1.7

A5 353 0.50 0.15 0.50 541 106 1.5–2.9

A6 353 0.50 0.31 0.50 690 151 2.4–3.2

A7 353 0.50 1.00 0.50 734 205 2.6–4.5

A8 353 0.50 0.95 0.50 645 148 2.7–5.0

A9 353 1.00 0.15 0.50 811 141 1.8–7.6

A10 1666 1.00 1.00 0.01 972 154 1.8–9.5

A11 1666 1.00 0.59 0.01 920 138 2.0–14.0

A12 1666 1.00 1.00 0.01 1877 634 5.7–12.0

A13 1054 10.00 0.59 0.01 1081 105 6.0–94.0

B1 3846 0.00 � � � 0.01 2813 296 0.6

B2 1414 0.50 0.31 0.5 2572 311 2.6

B30 6123 1.00 1.00 0.01 3714 386 5.0–18.0

B3 6123 0.40 0.50 0.01 4105 298 18.0–24.0

FIG. 1 (color online). Kinetic and magnetic energy evolution
as a function of time for the three 10243 runs. The vertical
dashed line indicates when the forcing parameters changed from
the ones for B30 to the ones for B3.
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various values of magnetic energy from the same run. Thus
the turbulent scaling of the energy dissipation rate can be
tested using multiple measurements for a wide range of
magnetic field strength that here is quantified by � 	
EM=EK. The system is statistically isotropic (there is no
preferred direction if an ensemble average or long time
average is considered) that allows us to perform spherical
averages and thus improve two point statistics compared to
the case with uniform magnetic fields. We note however
that a single ‘‘snapshot’’ of the field can be very
anisotropic.

Figure 2 shows the energy dissipation rate normalized

byU3
rmsku ¼ ð2EKÞ3=2ku (top panel) and the ratio of Ohmic

to viscous dissipation (bottom panel) as a function of the
energy ratio � for all the examined runs. The data cover
more than two decades of the parameter �. While little
variation is observed for the ratio ��=��, three different

behaviors can be observed for the total energy dissipation
rate. First, over the range � (0:5 � � � 20) the energy
dissipation is independent of�. This implies that � follows
the Kolmogorov scaling � / u3‘=‘ even when the large-

scale magnetic energy is twenty times greater than the
turbulent kinetic energy. The data include runs that vary

from fully helical to nonhelical, and strongly magnetically
forced to dynamo runs and for R� � 100 to R� � 300.
Thus this result seems to be very general and robust in this
range.
At � larger than 10, two new branches appear. The

results of run A12 that are fully helical and strongly mag-
netically forced are marked by triangles in Fig. 2. For this
run both magnetic and kinetic energy is concentrated in the
large scales building helical structures with very small
turbulent fluctuations. Since they are both helical, the
nonlinearities are minimized. As a result the large-scale
magnetic and kinetic energy both increase with time keep-
ing their ratio � fixed while the small scale fluctuations
and the dissipation rates saturate with time. As a result the
normalized dissipation rate �=U3

rmsku decreases with time
resulting in the behavior seen in Fig. 2. The dynamics here
are controlled by magnetic helicity condensates, and
despite the large Reynolds number they do not have finite
dissipation (limRe!1� > 0). Thus they are not truly
turbulent.
Run A13 marked by circles in Fig. 2 is strongly mag-

netically forced in order to achieve large values of�within
the time limitations imposed by the computational costs.
This run, although in agreement with the turbulent scaling

for� � 20, transitions to the scaling � / �1=2 as indicated
by the dashed line in the figure. This scaling can be under-
stood if we consider that the main mechanism for cascad-
ing the injected energy is not the velocity shear
Su / Urmsku but rather the magnetic shear Sb / Brmskb
that shreds Alfvén wave packets as they travel along cha-

otic magnetic field lines. The resulting scaling is � /
SbU

2 / U3kb�
1=2 observed in Fig. 2. Thus the large-scale

field rather than suppressing the turbulence cascade, it
enhances it.
None of the runs showed a weak turbulence scaling that

would have implied according to Eq. (2) the scaling � /
U4

rms=BLku / ��1=2. There are few possible interpreta-
tions for this result. First, just like the case of the uniform
magnetic field, the absence of weak turbulence can be
explained by the entrapment of energy in modes that
vary perpendicular to the local magnetic field so that
‘? � ‘k makes the nonlinear coupling strong. Another

possibility is the lack of uniformity of the magnetic energy
density: regions exist in space with weak local magnetic
field where eddies can be stretched with no resistance from
magnetic tension. If the cascade in these regions domi-
nates, the scaling of turbulence becomes independent of
BL. A final possibility is that magnetic instabilities reveal
themselves altering the scaling (like run A13) before the
magnetic field becomes strong enough for weak turbulence
to manifest itself.
The energy spectra Em, Ek for the high resolution runs

B1, B2, B3 are shown in Fig. 3. For the B1 dynamo run the
kinetic energy spectrum shows a power-law scaling

slightly less steep than the k�3=2 prediction. A clear change

FIG. 2 (color online). Top panel: The energy dissipation rate �
normalized by U3

rmsku as a function of � ¼ EM=EK for all runs.
Brms ¼

ffiffiffiffiffiffiffiffiffiffi
2EM

p
and Urms ¼

ffiffiffiffiffiffiffiffiffiffi
2EM

p
. The dashed lines indicate the

scaling � / U3
rmsku and � / U2

rmsBrmskb / �1=2. Bottom panel:
The ratio of Ohmic dissipation rate �� ¼ �hjrbj2i to the viscous
dissipation rate �� ¼ �hjruj2i as a function of Eb=Eu.
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of slope at k� 8 where EmðkÞ becomes larger than EkðkÞ is
also observed. The magnetic energy spectrum does not
show a power-law scaling. The absence of a power-law
scaling might be linked to the absence of large-scale
magnetic structures due to the random forcing. The B2,
B3 runs, despite the one order of magnitude difference in
�, show similar results. The kinetic energy spectrum is

well fitted by a k�3=2 power law while the magnetic energy

spectrum is best fitted by a k�5=3 law. These values are also
observed in the velocity and magnetic field spectra in the
solar wind [23–25]. This agreement on the spectrum expo-
nents (despite the absence of a guiding field in our simu-
lations) suggests that effects like the nonuniformity of the
large-scale magnetic field can be important. Finally, we
note that the presence of the two different exponents

possibly indicates that a clear inertial range has not
been reached yet, even at 10243 grid sizes. The insets in
Fig. 3 show the total energy flux �ðqÞ 	 hu<

q ðu � ru�
b � rbÞ þ b<

q ðu � rb� b � ruÞi [26] (solid lines) and the
energy flux due to the vortex stretching term �uðqÞ 	
hu<

q ðu � ruÞi (dashed line). u<
q , b

<
q are the filtered veloc-

ity fields containing only wave numbers with jkj< q.
In all three cases the vortex stretching term plays a minor
role in cascading the energy.
The top panel of Fig. 4 shows the measured power-law

exponents from all the runs. The exponents were calculated
by fitting power-law solutions Ek � Akk

��K and Em �
Amk

��M in the range 2ku < k < 3
4 k�, where k� corresponds

to the peak of the enstrophy spectrum k2Ek. The range of
fitting can be seen in Fig. 3 by the vertical dotted lines.
The bottom panel shows the distribution of these exponents
in the range 1<�< 20, excluding run A12 and the A–A3
dynamo runs. Although the dispersion of these values is
quite large the exponents do not showmuch dependence on
the amplitude of the magnetic field. Their values are

FIG. 3 (color online). Kinetic and magnetic compensated en-
ergy spectra for the runs B1, B2, B3 (from top to bottom). The
straight lines indicate the scaling k�5=3 (solid line) and k�3=2

(dashed line). The inset shows the energy flux �ðkÞ (solid line)
and �uðkÞ (dashed line).

FIG. 4 (color online). Top panel: Measured exponents �K and
�M for all runs. The exponents were calculated by a linear fit in
the range 2ku < k < 3

4 k�, where knu corresponds to the peak of

the energy spectrum. Bottom panel: Distribution of the measured
exponents for all runs in the range 1<EM=EK < 20, excluding
run A12 and A1–A3.
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concentrated around k�5=3 for the magnetic energy spec-

trum and k�3=2 for the kinetic energy spectrum, in agree-
ment with the high resolution runs.

Concluding, this work has showed the independence of
(a) the normalized energy dissipation rate (� / U3

rmsku) and
(b) the spectral exponents (�M ’ 5=3 and �K ’ 3=2) on
the amplitude of the large-scale magnetic field over a large
range of � and for a variety of forcing configurations.
For very strong magnetic fields �> 20, the energy dis-
sipation scaling transitioned to � / BrmsU

2
rmskb, implying

that the cascade is driven by magnetic shear. The measured
scaling of the energy dissipation is both fundamental
(it can be applied in a variety of contexts) and nontrivial
(it cannot be derived uniquely from dimensional argu-
ments). Deviations were observed only for fully helical
flows that formed magnetic helicity condensates in the
large scales that do not follow a turbulent scaling.
Analysis of higher order moments [26], local anisotropy,
and scale interactions [27] might shed more light on the
processes that control MHD turbulence.

This work was performed using HPC resources from
GENCI-CINES (Grant No. 2012026421).
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