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We investigate chaos synchronization of small-scale motions in the three-dimensional turbulent energy

cascade, via pseudospectral simulations of the incompressible Navier-Stokes equations. The modes of the

turbulent velocity field below about 20 Kolmogorov dissipation lengths are found to be slaved to the

chaotic dynamics of larger-scale modes. The dynamics of all dissipation-range modes can be recovered to

full numerical precision by solving small-scale dynamical equations with the given large-scale solution as

an input, regardless of initial condition. The synchronization rate exponent scales with the Kolmogorov

dissipation time scale, with possible weak corrections due to intermittency. Our results suggest that all

sub-Kolmogorov length modes should be fully recoverable from numerical simulations with standard,

Kolmogorov-length grid resolutions.
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Chaos synchronization (CS) [1] is an intriguing phe-
nomenon which has been defined as ‘‘a process wherein
two (or many) chaotic systems . . . adjust a given property of
their motion to a common behavior due to a coupling or to a
forcing’’ [2]. The simplest example is a chaotic dynamics
_x ¼ fðxÞ whose phase vector x is projected onto two or-
thogonal components x1¼P1x and x0

1 ¼ Q1x ¼ x� x1

satisfying two coupled equations

d

dt
x1 ¼ P1fðx1 þ x0

1Þ;
d

dt
x0
1 ¼ Q1fðx1 þ x0

1Þ: (1)

Chaos implies sensitive dependence to initial data, with
nearby trajectories diverging exponentially. However, con-
sider another dynamical system in the Q1 space given by a
copy of the second equation:

d

dt
w ¼ Q1fðx1ðtÞ þ wÞ (2)

with x1ðtÞ substituted from the solution of (1). Chaos syn-
chronization occurs if the trajectories wðtÞ and x0

1ðtÞ con-
verge, limt!1 k wðtÞ � x0

1ðtÞ k¼ 0, for an arbitrary choice
of initial condition w0 in (2). Such a phenomenon requires
that the leading Lyapunov exponent for the subdynamics
(2) be negative. It is often the case that sync-
hronization occurs, at least approximately, even when
imperfect data ~x1ðtÞ are employed in (2), e.g., the exact
x1ðtÞ contaminated with substantial errors. This effect was
proposed in Refs. [3–5] as a basis for encrypted communi-
cations. CS has also been observed in neural networks [6,7],
with ‘‘hyper-synchronous’’ dynamics in the human brain
associated to epileptic seizures [8]. CS has been reported
in spatiotemporal chaos [2,9–11], investigated for fluid
models used in meteorology [12–14], and proposed as a
mechanism for turbulence control [15–17].

No previous numerical study of CS has been made, to
our knowledge, for fully developed 3D Navier-Stokes (NS)
turbulence with a Kolmogorov inertial range. Our goal in
this Letter is to explore CS for 3D NS turbulence with P1

taken to be the projection onto the finite number of velocity
modes with wave number magnitudes less than a fraction f
of �=�K, where �K is the Kolmogorov dissipation scale,
and with Q1 the orthogonal projection onto the modes
with higher wave numbers. Our principal motivation is
experimental results [18], physical theory [19,20], rigorous
mathematics [21,22] and numerical simulations [23,24]
implying that spatial intermittency can lead to length scales
far smaller than the Kolmogorov scale �K. It has been
argued on the basis of such tiny unresolved length scales
‘‘that the direct numerical simulation (DNS) based on the
mesh equal to the Kolmogorov scale becomes quite
inaccurate’’ [20]. If true, this would call into question the
vast majority of current DNS studies of turbulent flow. A
contrary argument is based on the idea that the sub-
Kolmogorov scales should be ‘‘slaved’’ to the inertial-
range modes and, thus, implicit and recoverable from
DNS with grid resolution �K. A mathematical formaliza-
tion of this idea closely related to CS is the notion of an
inertial manifold (IM) [25], which consists of an invariant,
attractive manifold given by the graph of a mapping x0

1 ¼
�ðx1Þ which recovers x0

1 for given x1. Existence of an IM

with the property of ‘‘asymptotic completeness’’ [26] is
one possible mechanism for CS (e.g., see Ref. [27]). There
are currently no proofs of existence of an IM for
3D NS dynamics, although ‘‘approximate IMs’’ have
been obtained for 2D NS solutions [28,29]. These have
been proposed for use as nonlinear Galerkin approxima-
tions to the dynamics of ‘‘large’’ super-Kolmogorov scales
in NS turbulence, whereas our goal is the opposite one, to
recover the sub-Kolmogorov scales and address the out-
standing issue of the smallest length-scale in a turbulent
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flow [23,24]. Even when existence of an approximate IM
can be established for NS turbulence, there are no sharp
estimates of the smallest fraction f of the Kolmogorov
wave number sufficient for slaving. Thus our numerical
investigation in this Letter is an important complement to
existing mathematical results.

The incompressible NS equations with a solenoidal
body force f have the form:

@tuþ Pðu � ru� ��uÞ ¼ f; (3)

where u is the fluid velocity, � is the kinematic viscosity,
and P is the Leray projection [30] to enforce the
incompressibility condition r � u ¼ 0. We employ the
pseudospectral DNS method, which solves a Galerkin
approximation to this system

@tu2 þ P2ðu2 � ru2 � ��u2Þ ¼ f; (4)

with P2 the Leray projection in a space spanned by a finite
set B2 of Fourier modes. For our purpose, this will repre-
sent the ‘‘fine-grained’’ NS dynamics. In order to study the
possible presence of CS, we consider a further subset
B1 � B2 and corresponding projections P1 and Q1 ¼
P2 � P1. The subdynamics for the evolution of w � u2 �
u1 is given by the equation:

@twþQ1½ðu1 þ wÞ � rðu1 þ wÞ � ��w� ¼ 0; (5)

where we have assumed that f forces only the large scales,
i.e., Q1f ¼ 0. In our experiments we shall solve the fine-
grained equation (4) for u2ðtÞ and then solve the subdy-
namics (5) with u1ðtÞ ¼ P1u2ðtÞ. We shall investigate
whether wðtÞ converges to Q1u2ðtÞ for increasing t, inde-
pendent of the initial data w0. Specifically, we will study
the evolution of the normalized error defined as

�ðtÞ ¼ kwðtÞ �Q1u2ðtÞk2
kwðtÞk2 ; (6)

where kk2 is the usual L2 norm. If synchronization occurs,
this error should tend to zero exponentially fast, indepen-
dent of the initial value w0.

The concrete system considered in this work is
Kolmogorov flow with f ¼ ðA sinðkfyÞ; 0; 0Þ for A ¼ 1

and kf ¼ 1, in an elongated box ½0; Lx� � ½0; Ly� �
½0; Lz� with Lx ¼ 3Ly ¼ 3Lz ¼ 6�. The numerical simu-

lation uses a space grid of N ¼ 3n� n� n points with
isotropic mesh spacing corresponding to maximum wave
number kM ¼ n=3 for the 2=3-dealiasing rule. This
particular configuration leads to a nontrivial turbulent
flow, that is anisotropic and inhomogeneous in the large
scales [31]. In the context of synchronization of chaos, it is
relevant that strong bursts can be observed in Kolmogorov
flow. In Ref. [31] very long integration times were used
precisely because the time averages presented converge
very slowly. Thus by studying the system at different times,
significantly different regimes can be sampled. In terms of

the kinetic energy E and energy dissipation rate ", the

Kolmogorov units and the Reynolds number are �K ¼
ð�3

" Þ1=4, �K ¼ ð�"Þ1=2, R� ¼
ffiffi

5
3

q

2E
ð�"Þ1=2 . Five series of simula-

tions are performed, with resolutions ranging from 144�
48� 48 to 768� 256� 256 grid points, and R� going
from 40 up to 250, keeping the minimum kM�K around
1.5. The energy spectra plotted in Fig. 1 show a short
Kolmogorov inertial range with approximate �5=3
power-law scaling.
For our CS study a very long simulation of Kolmogorov

flow is performed for each resolution, saving a few time
series of the velocity fields from the quasistationary
regime, each interval separated by relatively long times.
Four time intervals of u2 are chosen for each resolution
(three for the 768� 256� 256 case). Next u1 is obtained
by the projection P1 of u2 onto modes with wave numbers
smaller than a cutoff value in each direction (i.e., jkxj, jkyj,
jkzj< kc). Finally, w is evolved in time using (5). For each
interval, two initial conditionsw0 were chosen, so that each
series consists of eight individual runs. In the experiments
presented, initial data w0 with ‘‘natural’’ spectral scaling
properties were created by applying random phase shifts to
all Fourier modes of u2 � u1. Several alternative initiali-
zation methods for w0 were tested and yielded consistent
results, not shown here. As observed in Fig. 2, for the
indicated values of kc, �ðtÞ does indeed decrease exponen-
tially fast, until it reaches a smallest possible value dictated
by our single precision arithmetic. Thus w synchronizes
to Q1u2.
Figure 2 also shows that the exponential decay rate a

becomes greater at larger kc, a natural result since w then
lives on smaller and hence faster scales. We have studied
this effect quantitatively. The linear part of the trends in
Fig. 2 can be computed from the data by least-squares error
fitting atþ b to the measured log10�ðtÞ in the region where
the error is larger than the roundoff error floor, i.e., for �
between 1 and 10�5. The behavior of the measured a as a
function of kc depended on the various parameters of the

FIG. 1 (color online). Energy spectra of the Kolmogorov flow
simulations for n ¼ 48, 64, 96, 128, 256. The spectra are time-
averaged over 6, 4.5, 3, 2.75, and 1.5 large-eddy turnover times,
respectively.
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simulations. To attempt to collapse the results, various
nondimensionalizations for a and kc were tested. It was
found that good collapse is observed when using
Kolmogorov (viscous) scales for both the cutoff wave
number as well as the synchronization exponent, i.e., to
plot a�K versus kc�K. See Fig. 3. To document the scatter
due to possible lack of statistical convergence, the duration
of ‘‘exponential decay’’ was split in half for each individ-
ual run, the corresponding pair (kc�, a�K) was computed
for each of the resulting �ðtÞ histories, and then the average
over all the simulations with the same resolution
(or Reynolds number) was computed. These are the
results that are presented as symbols in Fig. 3. Error bars
are for maximum and minimum values. The results col-
lapse reasonably well, although the lines seem to shift a
little to the right with increasing resolutions. This hints at a
slight Reynolds number dependence, which is expected

due to intermittency [19,20]. The results of Fig. 3 are
parameterized well by a linear fit a�K � ��ðkc�K �
0:15Þ, implying that synchronization of small scales to
large scales occurs only if the cutoff wave number
is such that kc�K > 0:15. Using the correspondence
rc ¼ �

kc
, this denotes scales smaller than rc < 20�K, i.e.,

in the transition zone between the inertial and viscous
ranges. Although these results were obtained in a particular
flow with one forcing scheme, they involve only
dissipation-range scales and may be plausibly expected
to be universal.
The key point to be taken from this study is that it is

possible to reconstruct perfectly the small scales of a
turbulent flow from coarse-grained data. If the velocity
of a turbulent fluid is sampled on a spatial grid even as
coarse as 10–15 times the Kolmogorov scale, these (time-
dependent) data can be refined to their original resolution,
in the sense that the subdynamics of small scales after a
suitable time will synchronize with the large-scale dynam-
ics. Figure 4 shows what this refinement implies: fine
details of small-scale structures that are smeared out in
the coarse-grained field reappear, as if by magic, when
refined by computing the subdynamics. Of course, syn-
chronization takes time. For example, assuming that
kc�K � 1=4 as in Fig. 4, and assuming that a precision
of � ¼ 10�3 is desired, an interval of about 50�K is
needed. This translates into about 65=R� in units of the
integral time, significantly less then an integral time for
moderately large values of R�. Doubling of this interval
would lead to an error of order 10�6, at the lower limit for
single precision computations.
Our results offer some support to the current practice of

DNS with grid spacing of order �K, since they suggest
that there may be an exact solution of the 3D NS equa-
tions which, when coarse-grained to the grid scale, agrees
with the finite-resolution simulation. Tiny scales much
smaller than �K may be present in the NS solution that
are missed in the DNS, but the missing modes appear to
be completely slaved to the super-Kolmogorov scales. To
more fully address these issues, numerical experiments on
CS must be performed with approximate data for u1

which come not from a projection of a fine-grained
solution u2 but instead from a pseudospectral DNS with
cutoff wave number kc, for example from an archived
DNS database [32]. Outstanding issues are whether CS
will occur for such approximate u1 and whether the
reconstructed field u2 ¼ u1 þ w is then a solution of
the fine-grained equations. These questions are currently
under active investigation. The size of the smallest length
scale in turbulence is of interest not only for physical
theory but also for fundamental mathematical theory of
3D incompressible NS dynamics. The Clay Millenium
Prize problem on that equation concerns whether its
solutions at sufficiently high Reynolds numbers may
develop actual singularities, with velocities exploding to

FIG. 2 (color online). Time evolution of normalized error �ðtÞ
for the simulation on a grid of 308� 96� 96 and R� � 108,
using several cutoff wave numbers. The slope in these graphs
yields the exponential decay rate a, or rate of synchronization.

FIG. 3 (color online). Symbols: Average of measured synchro-
nization exponents (obtained by fitting the exponential range in
results such as in Fig. 2) as a function of the cutoff wave number
for five different simulation sizes and Reynolds numbers, plotted
in Kolmogorov units. Error bars are for maximum and minimum
values of different runs and ranges used in the fit.
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infinity at the singularity and the smallest length scale
going to zero [33]. In nature, physical effects beyond the
incompressible NS model would cut off the singularity at
some tiny length scale, but the observable manifestations
should be striking. There is presently no empirical evi-
dence whatsoever for such ‘‘Leray singularities,’’ but this
may be due to limited resolution or statistics of current
numerical and experimental studies. If such singularities
occur anywhere at all, high Reynolds turbulent solutions
are perhaps the most likely venue. Even in turbulent flows
they may be ruled out if the instantaneous ‘‘dissipation
wave number,’’ taking into account the effects of inter-
mittency, has some bounded moments in time averages
[22]. Better understanding of the interactions between

inertial range and far dissipation range modes in turbulent
NS flows should help to illuminate this problem.
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