
Lifshitz Gravity for Lifshitz Holography

Tom Griffin,1,2 Petr Hořava,1,2 and Charles M. Melby-Thompson3

1Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, California 94720-7300, USA
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162, USA

3Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
(Received 21 November 2012; published 19 February 2013)

We argue that Hořava-Lifshitz (HL) gravity provides the minimal holographic dual for Lifshitz-type

field theories with anisotropic scaling and a dynamical exponent z. First we show that Lifshitz spacetimes

are vacuum solutions of HL gravity, without need for additional matter. Then we perform holographic

renormalization of HL gravity, and show how it reproduces the full structure of the z ¼ 2 anisotropic Weyl

anomaly in dual field theories in 2þ 1 dimensions, while its minimal relativistic gravity counterpart

yields only one of two independent central charges in the anomaly.
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The concepts of scaling and the renormalization group
have played a central role in organizing our understanding
of quantum field theory (QFT) and statistical systems for
half a century. Here we will focus on systems in Dþ 1
spacetime dimensions which exhibit scaling anisotropic
between time and space,

t ! bzt; xi ! bxi; i ¼ 1; . . .D; (1)

with the degree of anisotropy measured by the dynamical
exponent z. Systems with such Lifshitz scaling appear
frequently in quantum and statistical field theory of con-
densed matter systems [1], especially in the context of
Lifshitz multicritical points, and in nonequilibrium statis-
tical mechanics. More recently, in a seemingly unrelated
development, anisotropic Lifshitz-type scaling (1) has
played a central role in the new approach to quantum
gravity initiated in Refs. [2,3] and commonly referred to
as Hořava-Lifshitz (HL) gravity.

Since AdS/CFT correspondence taught us that many
relativistic QFTs have relativistic gravity duals, it seems
natural to expect that the two disparate applications of
Lifshitz scaling—nonrelativistic QFT on one hand and
HL gravity on the other—should similarly be related by a
holographic duality. The background geometry that cap-
tures the spacetime symmetries of QFTs with Lifshitz
scaling (1) is easy to find; it is given by the Lifshitz
spacetime [4] in Dþ 2 dimensions,

ds2 ¼ �
�
r

‘

�
2z
dt2 þ

�
r

‘

�
2
dxidxi þ

�
‘

r

�
2
dr2: (2)

(From now on, we will set its radius of curvature ‘ ¼ 1 for
convenience.) The holographic gravity duals of Lifshitz-
type QFTs should therefore have Eq. (2) as their solution.

Until now, the overwhelming share of work on Lifshitz
holography (starting with Ref. [4]) does not use HL grav-
ity; it uses relativistic bulk gravity coupled to matter
instead. In the relativistic case, the coupling to matter is
necessary, as the Lifshitz spacetime with z � 1 does not

solve the Einstein equations in the vacuum. Here we stress
that another natural option is available: Instead of adding
ad hoc matter to Einstein gravity so that Eq. (2) becomes a
solution, one can modify gravity itself.
Perhaps the most popular relativistic model for Lifshitz

holography proposed in Ref. [5] consists of Einstein
gravity [described by the bulk metric G��, in coordinates

y� ¼ ðt; xi; rÞ, with � ¼ 0; . . .Dþ 1] coupled to a mas-
sive vector A�:

Srel ¼ 1

16�GN
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dtdDxdr
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�
þ surface terms: (3)

The Lifshitz geometry (2) is a solution for an appropriate
condensate of A0 and an appropriate choice of � and m.
In this Letter, we will follow the alternate path and show

that the Lifshitz spacetime is a vacuum solution of minimal
HL gravity, with no additional matter. The preferred folia-
tion of the Lifshitz spacetime, required for its embedding
into HL gravity, is simply the foliation by leaves of con-
stant t. We will often split the bulk coordinates y� into time
t plus Dþ 1 spatial coordinates ya ¼ ðxi; rÞ, i ¼ 1; . . .D,
and write the spacetime metric G�� in the Hamiltonian

decomposition,

G��dy
�dy� ¼ �N2dt2 þ gabðdya þ NadtÞðdyb þ NbdtÞ:

Thus, gab is the metric on the spatial bulk leaves of fixed t,
Na is the shift vector, and N the lapse function. Since the
Lifshitz geometry (2) requires N with a spatial depen-
dence, we work in the nonprojectable version of HL grav-
ity, withN a full-fledged spacetime-dependent field. Gauge
symmetries are the foliation-preserving diffeomorphisms
of spacetime.
HL gravity may enjoy better short-distance properties

than Einstein gravity (if it is dominated at high energies
by its own z > 1 scaling), but here we will follow the
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‘‘bottom-up’’ strategy common in relativistic holography,
and work only in the low-energy bulk gravity approxima-
tion. This is equivalent to the large N limit in the dual field
theory. In this low-energy limit, HL gravity is dominated
by the most relevant terms compatible with the gauge
symmetries, and its effective action is

S ¼ 1

2�2

Z
dtdDxdr

ffiffiffi
g

p
N

�
KabK

ab � �K2 þ �ðR� 2�Þ

þ �2

2

raNraN

N2

�
: (4)

[Here Kab ¼ 1
2N ð@tgab �raNb �rbNaÞ is the extrinsic

curvature of the foliation, R the scalar curvature of gab, and
K ¼ gabKab.] The novelty compared to pure Einstein
gravity is in the three couplings �, �, and �, which in
Einstein gravity are fixed to � ¼ � ¼ 1 and � ¼ 0. Note
that turning on the � coupling is important for the consis-
tency of nonprojectable HL gravity [6,7]: Taking the naive
� ! 0 limit in Eq. (4) would lead to a nonclosure of the
constraint algebra.

When � ¼ 0, the flat spacetime RDþ2 is a solution of
Eq. (4). The propagating graviton modes consist of the
transverse-traceless tensor polarizations with dispersion
relation !2 ¼ �k2 (here k � ffiffiffiffiffiffiffiffiffiffi

kaka
p

is the magnitude of
the spatial momentum), plus an extra scalar graviton po-
larization, with dispersion

!2 ¼ �ð1� �Þ
½1� ðDþ 1Þ��

�
1þD

�
2�

�2
� 1

��
k2: (5)

The requirement of stability and perturbative unitarity
around flat spacetime constrains the couplings to be in
the range �> 0,

�2 � 2�D

D� 1
; (6)

and

� � 1 or � � 1=ðDþ 1Þ: (7)

Turning on the cosmological constant �< 0, we find
that the Lifshitz geometry (2) is a vacuum solution of HL
gravity with low-energy effective action (4), if

� ¼ �ðDþ z� 1ÞðDþ zÞ
2

(8)

and

�2 ¼ 2�ðz� 1Þ
z

: (9)

This simple interpretation of Lifshitz spacetimes as vac-
uum solutions of HL gravity suggests that the latter is the
natural minimal holographic model of holographic duality
for Lifshitz-type field theories.

Further evidence for the universality of this minimal
model of Lifshitz holography comes from the analysis of
anisotropicWeyl anomalies in holographic renormalization
initiated in Ref. [8] (and also later in Ref. [9]). Just like

their relativistic counterparts, anisotropic Weyl anomalies
contain a lot of universal information about the system, and
serve as useful probes of the duality. Consider again some
Lifshitz-type QFT on RDþ1 with coordinates (t, xi) and a
general background metric

ds2 ¼ �N̂2dt2 þ ĝijðdxi þ N̂idtÞðdxj þ N̂jdtÞ:
It is useful to think of this theory as residing at the space-
time boundary r ! 1 of the Dþ 2 dimensional asymp-

totically Lifshitz spacetime, with ĝij, N̂i, and N̂ being the

components of the appropriately defined (anisotropic con-
formal class of the) boundary metric [8]. Generally, we will
put hats on quantities defined at the boundary to distinguish
them from their bulk counterparts. We define the aniso-
tropic Weyl transformations generated by a spacetime-
dependent �ðt; xiÞ as
	ĝij ¼ 2�ĝij; 	N̂i ¼ 2�N̂i; 	N̂ ¼ z�N̂: (10)

These represent a local generalization of the rigid scaling
transformations (1). A QFT which is classically invariant
under Eq. (10) can develop an anisotropic Weyl anomaly at
the quantum level, with the effective action transforming as
(see Appendix C of Ref. [8] for details)

	Seff½ĝij; N̂j; N̂� ¼
Z

dtdDx
ffiffiffî
g

p
N̂�ðt; xiÞAðt; xiÞ:

The independent terms that can appear inAðt; xiÞ are local
functionals of the metric, invariant under foliation preserv-
ing diffeomorphisms. They can be classified by solving a
cohomological problem [8] designed to automatically
incorporate the Wess-Zumino consistency conditions on
the anomaly. However, the multiplicative coefficients with
which these terms contribute to the anomaly (and which we
will refer to as ‘‘central charges’’) must be calculated for a
given theory on a case-by-case basis. Perhaps the simplest
nontrivial case is D ¼ 2 and z ¼ 2. In this case, the
anomaly is [8]

A¼cK

�
K̂ijK̂

ij�1

2
K̂2

�
þcV

�
R̂�r̂iN̂r̂iN̂

N̂2
þ�̂N̂

N̂

�
2
; (11)

with two independent central charges, cK and cV . (Here

K̂ij, r̂i, and R̂ are the extrinsic curvature, connection, and

the scalar curvature constructed from ĝij). As noted in

Ref. [8], A in Eq. (11) takes the form of the Lagrangian
for z ¼ 2 conformal HL gravity [2,3] in 2þ 1 dimensions.
Moreover, while the first term in Eq. (11) satisfies the so-
called ‘‘detailed balance condition,’’ (i.e., it is related to the
square of the variation of another local functional W, see
Refs. [2,3]), the other does not.
For QFTs with holographic gravity duals, we can calcu-

late the anomaly by performing holographic renormaliza-
tion of the bulk theory [10–12] (see Refs. [13–15] for
reviews). The relativistic Weyl anomaly was calculated
this way in Ref. [10]. Holographic renormalization for
the relativistic bulk theory (3) in asymptotically Lifshitz
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spacetimes was developed and applied to the anisotropic
Weyl anomalies in Ref. [8] following the earlier work of
Refs. [16–19]. This procedure relies substantially on the
notion of anisotropic conformal infinity developed in
Ref. [20]. In the low-energy gravity approximation

Seff½ĝij; N̂i; N̂� is calculated by evaluating the on-shell

gravity action with the appropriate falloff conditions on
the metric field as r ! 1. This on-shell action is divergent
due to infinite volume and needs to be renormalized. We
regulate it by cutting r off at r
 ¼ 1=
, and expand the on-
shell action asymptotically to reveal the structure of its
divergences. For the special case of D ¼ z, this expansion
gives [8] (modulo terms that vanish as 
 ! 0)

Z
dtdDx

ffiffiffî
g

p
N̂

8<
:
XD�1

n¼0

Lð2nÞ


2ðD�nÞ � ~Lð2DÞ log
þLð2DÞ
9=
;:

(The log
 term is present only for special values ofD and z
[8], including the case D ¼ z ¼ 2 of interest here.) The
divergent terms are then canceled by local counterterms,

and Seff ¼
R
dtdDx

ffiffiffî
g

p
N̂Lð2DÞ.

To calculate these divergent terms, we use the
Hamiltonian form of holographic renormalization, as
developed for relativistic AdS/CFT in Refs. [21,22] and
extended to the asymptotically Lifshitz case in Ref. [8]
following [17]. In this formulation, the on-shell bulk action
is determined as a functional of the boundary metric
because it satisfies the Hamilton-Jacobi equation for the
radial evolution along r. The operator of radial evolution
	D is given by the generator of anisotropic dilatations on
the boundary, and the Hamilton-Jacobi equation yields a

recursive relation between the counterterms LðmÞ of adja-
cent scaling dimensionsm. One of these recursive relations
implies [8]

	DLð2DÞ ¼ �2DLð2DÞ þ ~Lð2DÞ: (12)

Interpreted from the boundary point of view, this means that

when ~Lð2DÞ � 0, Seff scales anomalously under the z ¼ D

anisotropic Weyl transformations, and ~Lð2DÞ is the aniso-
tropic Weyl anomaly.

For the special case of the relativistic model (3) with
D ¼ z ¼ 2, the divergent terms were calculated in Ref. [8],
where we obtained for the anisotropic Weyl anomaly

A � ~Lð4Þ ¼ 1

16�GN

�
K̂ijK̂

ij � 1

2
K̂2

�
: (13)

Thus, the anomaly in this relativistic model turns out to
have cV ¼ 0, or in other words, it satisfies the detailed
balance condition. Why is it so? The conclusive answer
was found in Ref. [8]: The relation implying that the
anomaly in the relativistic model (3) should satisfy detailed
balance follows from the holographic recursion relation

between the counterterms Lð2Þ and ~Lð4Þ, with Lð2Þ effec-
tively playing the role of the local functional W (see
Ref. [8] for details).

Looking for holographic duals of more general QFTs
with both central charges independently nonzero is an
interesting challenge. Before we embark on this pursuit,
we should first check that QFTs whose central charges cK
and cV are both nonzero indeed exist. Examples of strongly
coupled Lifshitz field theories are very scarce to say the
least, but our point can be made by considering the theory
of the free z ¼ 2 Lifshitz scalar �. When � is minimally
coupled to background HL gravity,

S� ¼
Z

dtd2x
ffiffiffî
g

p �
1

N̂
ð@t�� N̂ir̂i�Þ2 � N̂ð�̂�Þ2

�
;

this theory is classically invariant under Eq. (10) (with
	� ¼ 0), but develops an anisotropic Weyl anomaly at
the quantum level. This anomaly was calculated in Ref. [9],
and it turns out to have cV ¼ 0. One could perhaps specu-
late that cV ¼ 0 might be a universal property of all con-
sistent QFTs, hence eliminating the need for finding
gravity duals with cV � 0. A simple counterexample
comes from coupling � to background gravity nonmini-
mally, adding

� e2
Z

dtdDx
ffiffiffî
g

p
N̂

�
R̂�riN̂riN̂

N̂2
þ�N̂

N̂

�
2
�2

to S�. Even with this nonminimal coupling, this theory
stays classically invariant under the anisotropicWeyl trans-
formations (again with 	� ¼ 0), and develops a quantum
anomaly. We calculated this anisotropic Weyl anomaly
using the �-function regularization, and found cK ¼
1=ð32�Þ and cV ¼ �e2=ð8�Þ.
Having demonstrated the existence of QFTs with

cV � 0, we can now ask how to reproduce this second
central charge in a holographic gravity dual. One could
look for relativistic models more complicated than Eq. (3)
(see Ref. [23] for first results). Instead, we will show that
minimal HL gravity already accounts for both of the inde-
pendent central charges cK and cV in the anisotropic Weyl
anomaly. In order to show that, we have performed holo-
graphic renormalization of Lifshitz spacetimes in pure HL
gravity. Since the technicalities are quite involved (as they
were in the relativistic model (3) studied in Ref. [8]), here
we only present our main results; all technical details will
appear in Ref. [24].
We find modified recursion relations for the divergent

terms in the regulated action. In the special case D¼z¼2,
we solved these recursion relations and found that the

logarithmic term ~Lð4Þ is equal to

1

2�2

�
K̂ijK̂

ij � 1

2
K̂2

�
þ �

48�2

�
R̂� r̂iN̂r̂iN̂

N̂2
þ �̂ N̂

N̂

�
2
:

This is the anisotropicWeyl anomaly in our minimal model
of Lifshitz holography with vacuum HL gravity. It is
indeed of the most general form, with the two independent
central charges given in terms of two low-energy couplings
in minimal HL gravity: cK ¼ 1=ð2�2Þ and cV ¼ �=ð48�2Þ.
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The remaining coupling � does not appear in the anom-
aly, but it still plays an important physical role. Just as in
the case of flat spacetime, � enters into the dispersion
relation of the extra polarization of the graviton in the
bulk. For example, in the radial gauge gir ¼ 0, grr ¼
1=r2, the extra graviton mode � is found as the linearized
fluctuation of the radial component of the shift vector,
Nr ¼ �=r. Returning to the case of general D and z, the
linearized equations of motion imply the asymptotic
behavior near infinity �ðrÞ � rD� , with

D� ¼ 1

2

8<
:z�D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþDÞ2 þ 4Dð1� zÞ

1� �

s 9=
;: (14)

Standard rules of holographic duality will map D� to the
scaling dimensions �� of the operator dual to the extra
graviton. Unitarity of the dual field theory requires that the
scaling dimensions be real, implying (for z > 1)

� � 1 or � � �U � ðD� zÞ2 þ 4D

ðDþ zÞ2 : (15)

This unitarity bound represents an intriguing analog of the
Breitenlohner-Freedman bound familiar from relativistic
holography: In HL gravity, the unitarity bound (15) allows
the coupling � to dip into the region between 1=ðDþ 1Þ
and 1, which according to Eq. (7) would be forbidden
around flat spacetime. In the particularly interesting case
of D ¼ z, we get �U ¼ 1=D, which opens up the previ-
ously forbidden regime 1=ðDþ 1Þ � � � 1=D.

Now that we have seen that HL gravity provides candi-
date holographic duals for QFTs with anisotropic Lifshitz
scaling, is it possible to apply HL gravity also to QFTs with
isotropic z ¼ 1 scaling? Interestingly, the limit z ! 1 cor-
responds to � ! 0, the ‘‘unhealthy reduction’’ [6] of non-
projectable HL gravity, and may therefore be difficult to
make sense of. This is perhaps to be expected: z ¼ 1 QFTs
with such gravity duals would likely exhibit isotropic
dilatation symmetry without full relativistic conformal
symmetry, a phenomenon whose examples are few and
far between. Further study of our holographic duality in
the � ! 0 limit may shed new light on this rare class
of QFTs.

Finally, throughout this Letter we have used the effective
low-energy limit of HL gravity dominated by the terms of
the lowest dimension in the action. We have been agnostic
about how the model is completed at high energies. This
completion may come from additional degrees of freedom
(perhaps via an embedding into string theory) or it can be
via a self-completion of HL gravity, due to highly aniso-
tropic scaling at short distances. This latter possibility
would be particularly interesting, as it could open a new
door away from the large N limit and small bulk curvature.
As this Letter was being finalized, complementary results
about another form of nonrelativistic holography with HL
gravity were presented in Refs. [25,26]. Our results, and

those of Refs. [25,26], thus provide further evidence for the
picture proposed originally in Ref. [8] that the natural
arena for nonrelativistic holography is nonrelativistic HL
gravity. It remains to be seen whether—as suggested in
Ref. [8]—the nonrelativistic field theories whose holo-
graphic duals happen to be relativistic indeed represent
only a minority among all theories with gravity duals.
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