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Implementations of solid-state quantum optics provide us with devices where qubits are placed at fixed

positions in photonic or plasmonic one-dimensional waveguides. We show that solely by controlling the

position of the qubits andwith the helpof a coherent driving, collective spontaneousdecaymaybeengineered

to yield an entangled mesoscopic steady state. Our scheme relies on the realization of pure superradiant

Dicke models by a destructive interference that cancels dipole-dipole interactions in one dimension.
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The study of atoms coupled to the electromagnetic (EM)
field confined in cavities or optical waveguides has played
a central role in the fields of quantum optics and atomic
physics. In recent years the basics of that physical system
have been realized with artificially designed atoms in
solid-state setups. We may include here quantum dots
and nitrogen vacancy (NV) centers deterministically
coupled to photonic cavities [1–3], and plasmonic [4,5]
or photonic [6–10] waveguides, as well as circuit QED
setups where superconducting qubits are coupled to
microwave cavities [11,12]. Even though the physics of
atomic and solid-state quantum optical systems is similar,
the latter show a crucial advantage: on a solid substrate,
emitters may be placed permanently at fixed positions at
separations of the order of relevant wavelengths [13].
An important application of those systems is quantum
information processing in solid-state devices [14], where
artificial atoms acting as qubits are placed within the EM
field confined in a microcavity. Typically, the realization of
those ideas requires unitary qubit-field evolutions induced
by collective couplings to a single mode in a cavity. An
alternative pathway is to tailor the interaction with the
environment to induce quantum correlations between
qubits with dissipation [15,16]. This approach has been
proven to be advantageous to generate entanglement
between ensembles of atoms [17]. In this direction one-
dimensional guided modes have been recently pointed out
as a useful tool to create two-qubit entanglement [18–20]
and many-qubit entanglement in cascaded quantum
networks [21].

In this Letter, we show that by placing a set of qubits in a
one-dimensional waveguide (see Fig. 1) the continuum of
EM field modes induces a controllable dissipative coupling
between the qubits. The possibility of deterministically
positioning the artificial atoms or qubits allows us to
engineer the paradigm for quantum optical collective ef-
fects, i.e., the Dicke model of superradiance [22] in its pure
form. The observation of the latter in optical systems is
hindered due to dephasing caused by dipole-dipole inter-
actions [23,24]. In our scheme those interactions can be
switched off by an appropriate choice of the interqubit

distance. Adding a classical drive to the pure Dicke model
we obtain a dissipative system with a phase diagram of
steady states showing mesoscopic spin squeezing and
entanglement. This model has been theoretically investi-
gated in the past [25–27], but experimental realizations are
scarce. Finally we upgrade our scheme to a set of N four-
level emitters [28,29] and show that a judicious choice of
couplings to the waveguide and dispersion relations may
lead to a variety of many-body dissipative models which
show entangled steady states.
We start by modeling N two-level systems (2LSs),

fjginjeingn¼1...N , placed atpositions xn and coupled to a
one-dimensional field [see Fig. 1(a)] with photon annihi-
lation operators aq, described by the Hamiltonian H ¼
H0 þHI. The free term isH0 ¼ Hqb þHfield, with (@ ¼ 1)

Hqb ¼ !0

2

XN
n¼1

�z
n; Hfield ¼

X
q

!qa
y
qaq; (1)

where !0 is the qubit energy [see Fig. 1(b)] and !q is the

field dispersion relation. We define the Pauli matrices

FIG. 1 (color online). Panel (a) Experimental scheme of the
system: ensemble of equally spaced qubits placed in the vicinity
of a one-dimensional waveguide. Panel (b) Two-level system
configuration with resonant excitation. Panel (c): Four-level
system configuration with two additional lasers, where we im-
pose the condition: !L;1 �!0 ¼ !L;2 þ!0 ¼ !a and define

!1 ¼ !L;1, !2 ¼ !L;2 �!0.
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�z
n ¼ jeinhej � jginhgj, �þ

n ¼ jeinhgj, ��
n ¼ jginhej. The

photon polarization is neglected to focus on the most
relevant physics of our work. We consider a dipolar cou-
pling of the form

HI ¼
X
n

½�nEðxnÞ þ H:c:� (2)

with EðxÞ ¼ P
qgqðaqeiqx þ ayqe�iqxÞ, and gq a dipolar

qubit-field coupling. We define � as the reduced density
matrix for the qubits. In the weak coupling limit, the
evolution of � can be described by a Markovian
master equation of the form d�=dt ¼ Lð�Þ [30], with
the superoperator

L ð�Þ ¼ X
n;m

Jn;mð��
n ��

þ
m � ��þ

m�
�
n Þ þ H:c: (3)

A detailed derivation follows the description in dimensions
higher than one presented in previous works [24] (see
Sec. A of the Supplemental Material [31]). Special care
must be paid to the counter rotating terms in Eq. (3), which
have to be included to get the following result for the
collective decay rates

Jn;m ¼ �

2
eiqð!0Þjxn�xmj: (4)

We define � ¼ �ð!0Þ, with the function �ð!Þ ¼
g2qð!ÞDð!Þ=�, where qð!Þ is the resonant wave vector at

!, and we have defined the EM density of states, Dð!Þ ¼
ð2�=LÞjdqð!Þ=d!j, with L the quantization length. A
crucial observation for this work is that the couplings
Jn;m ideally do not decay with distance, a situation that is

unique to one-dimensional waveguides. In free space, on
the contrary, collective couplings decay like 1=r or 1=r3,
depending on the relative dipole orientation [24].

Homogeneous couplings [18,19,32–34] Jn;m ¼ �=2 can

be obtained from Eq. (4) by the choice xn ¼ n�0, with
�0 ¼ 2�=q0, and n 2 Z. This condition cancels dipole-
dipole interactions and we get the pure Dicke superradiant
decay described by

L Dð�Þ ¼ �

2
ðS��Sþ � SþS��Þ þ H:c:; (5)

with S� ¼ P
n�

�
n , Sþ ¼ P

n�
þ
n . We also define S� ¼P

n�
�
n=2, (� ¼ x, y, z), and the basis fjJ;Mig of eigen-

states of ~S2, Sz. Assuming an initial state like j�0i ¼
�njein ¼ jN=2; N=2i the system evolves within the sector
J ¼ N=2. We note that Dicke superradiant decay is
achieved in one dimension without the restriction that the
whole qubit ensemble is confined within a region of length
�0, which is a requirement for other realizations, i.e.,
atomic ensembles.

In this Letter we focus on the qubit steady state, �s,
which for a given Liouvillian fulfills Lð�sÞ ¼ 0. To
achieve some controllability on �s, we add a pump term
which physically can be implemented by the interaction of
qubits with a resonant field with Rabi frequency �,

L D;pð�Þ ¼ LDð�Þ � i
�

2
½Sx; ��: (6)

Competition between the collective decay and the pumping
leads to a nonequilibrium phase transition in the steady
state of the model at a critical pumping rate �c ¼ N�=2
[25], manifested in a kink in the population inversion
observable hSzi [see Fig. 2(a)]. Let us first give a brief
description of the two limiting cases. (i) Coherent steady
state regime, � � N�=2. Since LD;p can be obtained

from LD by the substitution S� ! S� þ i�=ð2�Þ, one
can easily show that �s¼j�cih�cjþO2ð��Þ, where j�ci ¼
ei

�
�Sx jN=2;�N=2i is a spin coherent state. (ii) The mixed

state phase, � � N�=2. Here we get an infinite tempera-
ture state. To show this, it is convenient to write LD in the
interaction picture with respect to �Sx=2. This allows us
to make the replacement S�!Sxþð1=2Þ½cosðtÞSyþ
sinðtÞSz�. Averaging over time, leads to

LD;p � �

2

�
Sx�Sx � S2x�þ 1

2

X
�¼y;z

ðS��S� �S2��Þ
�
þH:c:;

(7)

which has the infinite temperature state �s ¼ 1 as the
steady state. For calculations in the intermediate regime
we use the full solution in the jJ;Mi basis.
To quantify the entanglement we use the spin squeezing

� as a figure of merit,

�2 ¼ Nð�SxÞ2
hSyi2 þ hSzi2

: (8)

The latter is both an entanglement witness and it is also
linked to applications in quantum metrology [35–37].
Symmetric multiqubit states with � < 1 can be shown to
be entangled [36] with pairwise entanglement between any
pair of qubits [38]. Note that the above mentioned phases
(i) and (ii) lead to 1=�2 ¼ 1 and 1=�2 ¼ 0, respectively.
Another theoretical tool to be used is the purity, defined by
P ð�Þ ¼ Trð�2Þ, although we note that � witnesses entan-
glement also for mixed states. Both magnitudes are plotted
for increasing number of qubitsN in Fig. 2. We find a range
of pumping fields (� � �c) that induce a pure entangled
�s. This result leads to the controllable generation of
entangled states in mesoscopic samples of artificial atoms.
The time scale needed to achieve the stationary entangled
states benefits from a collective enhancement scaling as
�N, so that the higher the number of qubits, the more
efficient is the preparation of states.
We now upgrade our 2LS into a four-level system

(4LS) configuration [see Fig. 1(c)], and show that this
is a more advantageous situation. Our scheme can be
realized in the solid-state context [28,29] and describes a
variety of possible configurations in which a set of low-
level states are coupled to excited states by lasers with
different polarizations. Two ground states (jgin; jein)
are coupled to high energy states (jg0in, je0in). The
qubit part of the free Hamiltonian becomes now
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Hqb ¼ P
nð!g0 jg0inhg0j þ !e0 je0inhe0j þ !gjginhgjÞ. Two

weak nonresonant fields with amplitudes �L;1ð2Þ and

frequencies !L;1ð2Þ, induce transitions described by a

Hamiltonian term HL¼
P

n½ð�L;1=2Þje0inheje�i!L;1tþ
ð�L;2=2Þjg0inhgje�i!L;2tþH:c:�. We impose the condition

!L;1 �!0 ¼ !L;2 þ!0 ¼ !a, such that the two decay

channels in red of Fig. 1(c) (into modes aq) correspond

to photon emission with the same energy !a. After an
adiabatic elimination of the excited states (see Sec. II of
the Supplemental Material [31] for details) we get an
effective qubit-field interaction HIðtÞ ¼ Hsq

I ðtÞ þHz
I ðtÞ,

written in the interaction picture with respect to H0.
The first term reads

Hsq
I ðtÞ ¼ X

n

�Eðxn; tÞðDy
nei!at þDne

�i!atÞ; (9)

where �2 ¼ ð�L;1=2�1Þ2 � ð�L;2=2�2Þ2 (�1ð2Þ ¼!e0ðg0Þ�
!L;1ð2Þ) is a normalization constant. Dn ¼ u��

n þ v�þ
n is

a jump operator resulting from the cross radiative decay,
with u ¼ ��1�L;1=2�1 and v ¼ ��1�L;2=2�2, fulfilling

u2 � v2 ¼ 1. The latter condition will be useful in the
discussion below, and allows characterization by a single
parameter r, such that u ¼ cosh ðrÞ, v ¼ sinh ðrÞ. After
eliminating the EM field degrees of freedom we arrive at
the Liouvillian

L sqð�Þ ¼
X
n;m

Jsqn;mðD�
n �D

þ
m � �Dþ

mD
�
n Þ þ H:c: (10)

with Jsqn;m ¼ �sqe
iqð!aÞjxn�xmj and �sq ¼ �2�ð!aÞ. The

second term in the effective qubit-field interaction
describes the longitudinal decay processes

Hz
I ðtÞ ¼ �

X
n

Eðxn; tÞðu�z
ne

i!1t þ v�z
ne

�i!2t þ H:c:Þ; (11)

and leads to

L zð�Þ ¼
X
n;m

Jzn;mð�z
n��

z
m � ��z

m�
z
nÞ þ H:c: (12)

with Jzn;m¼�2½�ð!1Þu2eiqð!1Þjxn�xmjþ�ð!2Þv2eiqð!2Þjxn�xmj�
where !1 ¼ !L;1 and !2 ¼ !L;2 �!0. The term Lz

induces a dephasing mechanism that competes with the

spontaneous coherence buildup induced by Lsq. The

relative importance of those contributions depends on
the photon density of states at frequencies !a and !1;2.

We consider two limiting cases. (i) Small photonic band-
width. This is the most favorable configuration. We
assume that the density of states in the waveguide is
peaked around !a, with a bandwidth �! � j!1 �!aj,
j!2 �!aj such that �ð!1;2Þ � 0 and therefore Jzn;m � 0.
For example, this can be the case of one-dimensional
waveguides consisting of coupled cavities forming a one-
dimensional photonic crystal. Defining qð!aÞ ¼ 2�=�a

and choosing xn ¼ n�a we arrive at a spin-squeezed
version of the Dicke superradiant model

L sq;Dð�Þ ¼
�sq

2
ðD��Dþ �DþD��þ H:c:Þ; (13)

where we have introduced the collective spin-squeezed

operators Dþ=� ¼ P
nD

�=þ
n . In Fig. 3(a) we present a

calculation of the spin squeezing in the steady state as a
function of the squeezing parameter r. Remarkably, we
observe an enhancement of the maximum value of the
entanglement of several orders of magnitude compared to
the case of an ensemble of 2LSs. (ii) A large photonic
bandwidth. In the opposite limit we consider a broadband
waveguide [18,32] (j!L;1 �!L;2j � �!) such that the

density of states at the frequencies considered here is
comparable �ð!1Þ � �ð!2Þ. In experiments with optical
transitions, for example with quantum dots in optical or
plasmonic waveguides, the condition !1, !2, !a � !0

is found, since the transition energies are in the eV and
meV ranges for high energy and low energy transitions,
respectively [28,29]. Thus, we can safely assume
qð!aÞ � qð!1Þ � qð!2Þ ¼ 2�=�a, and consider that
quantum dots can be placed at the same relative optical
path with respect to all frequencies. To give a more
quantitative argument for this approximation we define
the group velocity of the modes of the waveguide
vgð!Þ¼ j@q!qj, and consider the limit j!1 �!ajvgð!aÞ;
j!2 �!ajvgð!bÞ � qð!aÞ, which corresponds to small

wave vector differences. In the case of constant vg and

optical transitions, this condition leads to differences of
10�3 in qð!aÞ, qð!1;2Þ. We neglect for the moment those

differences, which may lead to the inhomogeneous
broadening effects that are discussed later in this Letter.
Thus, the condition xn ¼ n�a leads to a collective
dephasing term of the form

L z;Dð�Þ ¼ �z

2
ðSz�Sz � Sz�þ H:c:Þ; (14)

where we have introduced the rate �z ¼ Jzn;n. In the large

photonic bandwidth limit we get thus two competing
terms L ¼ Lsq;D þLz;D. Collective dephasing increases

with the squeezing parameter r, as depicted in solid black
in Fig. 3(b). The competition between the dephasing and
squeezing mechanisms determines an optimal r to gener-
ate maximal entanglement. The latter can be higher than
the one generated by LD;p in the 2LS scheme considered

FIG. 2 (color online). Numerical results for the coherently
pumped Dicke model [Eq. (6)] for increasing N. Different colors
represent different number of qubits from N ¼ 2 to N ¼ 200 as
shown in the legend. (a) Population inversion hSzi=N. (b) Purity
P (dashed) and spin-squeezing parameter 1=�2 (solid).
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above. The large bandwidth limit is a worst-case scenario
as typically the waveguide modes are peaked around a
certain energy chosen by fabrication. Thus, in the realistic
case the entanglement generation will be in a situation
between the two limits. The purity of the system is also
affected by the dephasing term; however, one can still find
a region that combines high purity and high values of
entanglement as shown in Fig. 3(b).

Finally, we discuss the feasibility of our ideas, focusing
on the following points. (i) One-dimensional waveguides.
We require a long propagation length and efficient cou-
pling to the qubits. Coupling to guided modes of 85% to
89% has been reported for photonic [9,10] and plasmonic
[4,5] waveguides. Theoretical predictions of even higher
efficiencies have been pointed out [32,39], although at the
expense of reducing the field propagation length. In addi-
tion. the precise location of the qubits is also required,
which is possible for solid-state emitters using, i.e., litho-
graphic methods which nowadays have a precision larger
than 50 nm [13]. (ii) Lambda transitions in solid-state
qubits. We assume a degree of addressability of electronic
levels similar to the one achieved in atomic physics, espe-
cially the 4LS scheme. Applications in quantum infor-
mation processing [14,40] typically require controlling
optical transitions for spin pumping and initialization.

Recent experimental results [28,29] show level schemes
in quantum dots similar to those required in our work.
(iii) Markovian approximation. We require �N � !0 in
the 2LS scheme and �N � !L1;2; !a in the 4LS case,

such that the cooperative decay rate is much smaller
than the transition frequencies; the latter determine the
photonic bath memory time [30]. This condition is well
satisfied in the case of optical transitions of quantum dots.
(iv) Independent decay channels on each transition fre-
quency. This is required for the 4LS’s scheme in the
large bandwith limit, to obtain Eqs. (10) and (12), and is
justified as long as �N � j!L;1 �!aj, j!L;2 �!aj. Since
differences in the transition energies are of the order of
millielectron volts, this condition imposes a restriction on
the achievable rates for entanglement generation in our
scheme. (v) Homogeneous couplings. So far we have
neglected inhomogeneities in the couplings and qubit ener-
gies, which take the steady state out of the jJ;Mi basis.
This may be a severe restriction in quantum optical solid-
state devices. Although inhomogeneous broadening in
solid-state setups is still of the order of millielectron volts
for quantum dots [13] and microelectron volts for nitrogen
vacancy centers [41], the feasibility of our proposal will
benefit from current experimental efforts in the field.
We have carried out calculations to check the effect of

experimental imperfections with a focus on an inhomoge-
neous random distribution of qubit energies, �!j,

described by a term Hinh ¼
P

j�!j�
z
j (with �!j 2

½��;��). Exact calculations are very demanding; how-
ever, for a limited number of qubits N ¼ 2, 3, 4, we are
able to show that Hinh induces a dephasing time td, such
that for t > td, spin squeezing is totally degraded in the
2LS scheme, or strongly decreases below its maximum
value in the 4LS case (see Ref. [31] for details). In the
4LS scheme, one can use a bosonic approximation in the
master equation (�n � bn, with bn a bosonic annihilation
operator) and render the problem solvable in a low occu-
pation limit h�þ

n �ni � 0. This method has allowed us to
study the scaling of the spin squeezing for large N. Our
main result is that, under the effect of Hinh, the system
reaches the steady-state spin-squeezing values, and after a
time td, entanglement degrades down to a residual value.
The robustness of the 4LS scheme increases for large N,
since td grows with N. In the inset of Fig. 3(a) we show
results for small values of r, which are particularly well
described by the bosonization method. We confirm the
same scaling with larger values of r with higher degrees
of 1=�2 (see Ref. [31] for details). Our conclusion is that
the 4LS is advantageous with respect to the 2LS, since it
allows us to generate higher spin-squeezing values with d
increasing with N.
In conclusion, we have proved that one-dimensional

plasmonic [4,5] or photonic [6–10] waveguides can be
used to correlate a large number of qubits by collective
radiative decay. Our scheme is feasible in solid-state
devices currently under investigation for quantum
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FIG. 3 (color online). Entanglement witness for the 4LS
scheme in the small and large bandwidth limits.
(a) Entanglement witness (1=�2, solid) as a function of the
squeezing parameter, r, for increasing number of qubits (N ¼
2, 10, 50, 100, 200) in the small photonic bandwidth limit, where
Jzm;n � 0. In all the cases, the purity of the system is P � 1.
Inset: Dynamics of the entanglement witness (1=�2) for the
ensembles of qubits with a fixed random dispersion of qubit
energies, � ¼ 10�, for the different number of qubits depicted
in the main panel. (b) Entanglement witness (1=�2, solid) and
purity (P , dashed) as a function of the parameter r for increasing
number of qubits (N ¼ 2, 10, 50, 100, 200) in the large
bandwidth limit. The evolution of the collective dephasing
mechanism, �z, with the squeezing parameter is also plotted in
solid black.
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information processing. Those ideas can be translated to
circuit QED by controlling the qubit-field coupling (see
Ref. [42]).

We acknowledge QUITEMAD S2009-ESP-1594,
MICINN-MAT2011-22997, CAM- S-2009/ESP-1503,
FIS2009-10061, CAM-UCM/910758, RyC Contract
No. Y200200074, and FPU Grant No. AP2008-00101.
We thank to J. Miguel-Sanchez for useful discussion of
the experimental conditions.

Note added.—During completion of this work we
became aware of a theoretical preprint on atomic ensem-
bles in single-mode optical cavities [43] related to our 4LS
scheme. In our work we assume the continuum of modes in
a one-dimensional waveguide, and thus we do not require
the energetic resolution of a single cavity mode, which
would hinder the scaling up of our scheme in solid-state
setups with a large number of qubits.
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