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Information theory tells us that if the rate of sending information across a noisy channel were above the

capacity of that channel, then the transmission would necessarily be unreliable. For classical information

sent over classical or quantum channels, one could, under certain conditions, make a stronger statement

that the reliability of the transmission shall decay exponentially to zero with the number of channel uses,

and the proof of this statement typically relies on a certain fundamental bound on the reliability of the

transmission. Such a statement or the bound has never been given for sending quantum information. We

give this bound and then use it to give the first example where the reliability of sending quantum

information at rates above the capacity decays exponentially to zero. We also show that our framework

can be used for proving generalized bounds on the reliability.
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Introduction.—The capacity of a given channel is
defined as the highest rate of sending information (mea-
sured as the amount of information sent per channel use)
reliably in the limit of a large number of channel uses
[1–3]. The converse of the channel capacity theorem tells
us that sending information at rates higher than the ca-
pacity would necessarily be unreliable. A strong converse
additionally tells us that the reliability would be very small
and, in some cases more explicitly, would decay exponen-
tially to zero with the number of channel uses. Not all
channels have a strong converse [4].

Such strong converses are available for sending classical
information across classical or quantum channels (under
certain conditions) and are typically shown using a funda-
mental bound on the reliability. But, somewhat surpris-
ingly, there has been no such strong converse when
quantum information is sent across a quantum channel
and an equivalent bound has been unknown. We first prove
this bound in full generality and then apply it to give the
first example of a strong converse for quantum information
transfer where the reliability decays exponentially to zero
with the number of channel uses.

A strong converse establishes capacity as a sharp thresh-
old for information transmission and is clearly of great
theoretical interest. It also has interesting applications in
cryptography. Let Alice have an unlimited noise-free quan-
tummemory to store qubits while Bob has a noisy quantum
memory (also called the noisy-storage assumption). If
the strong converse holds for the quantum channel model-
ing the noise that acts on Bob’s memory, then Alice and
Bob can implement any two-party cryptographic task
securely [5].

We now provide a more detailed but high level overview
of our results. A protocol to transfer information (classical
or quantum) across a noisy communication channel is
characterized by the amount of information (R) it conveys
and the reliability (F) it promises. Typical definitions of

reliability ensure that F 2 ½0; 1�, where F � 1would imply
a highly reliable information transfer; i.e., information sent
and reconstructed at the receiver is very close to each other
(F ¼ 1 implies an exact match) and F � 0 would imply a
highly unreliable transmission.
Information could be classical or quantum. Classical

information is an unknown sequence of bits (such as an
email message) that Alice wants to send to Bob. A quantum
information transfer can also be looked upon as entangle-
ment transfer [3]. Alice has a quantum system S (informa-
tion) that is entangled with a reference system A and Alice
(who doesn’t have access to A) wishes to send a quantum
system through a noisy environment (that doesn’t act upon
A) such that at the end of the protocol, the state of A and

Bob’s system (say Ŝ) is close to the state of A and S.
The fundamental bound that we seek for all s 2 ½��; 0Þ

and protocol parameters � is given by

F � esR�E0ðs;�Þ; (1)

where E0ð0;�Þ ¼ 0, the derivative of E0ðs;�Þ with respect
to s at s ¼ 0 gives us a measure of information that could
be transferred across the channel reliably, and � is a
constant independent of � and R that, for our purposes,
is 0.5.
E0ðs;�Þ � sR is known as the Gallager’s exponent

named after R. G. Gallager, who first proposed it in a
different setting [6]. The bound in Eq. (1) was shown for
classical information sent across a classical channel
(Arimoto [7]) and a quantum channel (Ogawa and
Nagaoka [8]). Winter gave another proof of the strong
converse for sending classical information over quantum
channels without the Gallager’s exponent [9]. Extensions
of the above results are due to König and Wehner
(Ref. [10]) and further upper bounds to fidelity for entan-
glement unassisted and assisted codes are given by
Matthews and Wehner [11].
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The search for a quantum Gallager’s exponent when
quantum information is sent across a quantum channel
has been a long-standing problem and we provide it in
this Letter. Table I lists these various cases.

Our proof relies on using the monotonicity property
(mentioned below) satisfied by many information diver-
gences. The idea of proving bounds on the reliability for
classical protocols using monotonicity dates back to
Blahut’s work [12] and has been used further more recently
[13–15].

We now provide a brief and heuristic explanation as
to why this bound is considered fundamental. Let us
define for a single use of the channel that Ið�Þ ¼
@E0ðs;�Þ=@sjs¼0 and C ¼ max �0Ið�Þ is called the
channel capacity, where �0 is the part of � that can be
changed by fine-tuning the protocol [1–3]. There are pa-
rameters in the setup that cannot be changed, such as the
channel, and there may be some practical constraints,
such as the energy used for transmission, that the protocol
must obey. Because E0 obeys E0ð0;�Þ ¼ 0, for a negative s
near 0, �E0ðs;�Þ � �sIð�Þ � �sC and the above bound

could be weakened to give F & esðR�CÞ. Hence, ifR>C,
then F is always exponentially bounded away from 1. If
we use the channel n times for sending nR amount of
information, then we could, under certain conditions, write

the above bound as F & esnðR�CÞ. If R>C, then F ! 0
exponentially with n; i.e., if we are pumping information
into the channel higher than the capacity, then the trans-
mission would be quite unreliable.

We shall frequently deal with the quantum Rényi diver-
gences in this Letter that for parameter � � 0 are given by

D�ð�jj�Þ ¼ 1

�� 1
ln Tr���1��; (2)

where the limit is taken at � ¼ 1. We shall confine our-
selves with � 2 ð1; 2� in this Letter and deal with finite
dimensional quantum systems. The following two proper-
ties are needed later.

Property 1.—It has been shown (see Example 4.5 in
Ref. [16]) that for the chosen range of �, D� satisfies the
monotonicity property; i.e., for any two un-normalized
density matrices (that are positive but need not have a
unit trace) �, � and a completely positive and trace pre-
serving (CPTP) quantum operation N acting on them,
we have

D�ð� k �Þ � D�½N ð�Þ k N ð�Þ�: (3)

Property 2.—We shall also need the following queer
property that is not difficult to prove. Let �0 ¼ j0ih0j
and �1 ¼ j1ih1j be two projectors with �0 þ�1 ¼ 1.
Let � 2 ½0; 1�, � 2 ð0; 1�, � ¼ ��0 þ ð1� �Þ�1, � ¼
��0 þ ð1=�� �Þ�1, and let us define

D �ð� k �Þ :¼ D�ð� k �Þ: (4)

Note that � � 0 but does not have unit trace. Then
D�ð� k �Þ is independent of the choice of f�0;�1g and
increasing for all � � �.
We now derive a quantity from the Rényi divergence as

K�ðAiBÞ� :¼ inf
�B2SðH BÞ

D�ð�AB k 1 � �BÞ; (5)

whereH B is the Hilbert space describing quantum system
B and SðH BÞ is the set of all density matrices ofH B, and
1 is the identity matrix whose dimensions should be clear
from the context. Csiszár defined a similar quantity in the
classical case and related it to the Gallager’s exponent [17].
The following properties of K�ðAiBÞ� will be useful later.

Lemma 1.—Let EB!C be a quantum operation and
�AC ¼ EB!Cð�ABÞ. Then

K�ðAiBÞ� � K�ðAiCÞ�:
Lemma 2.—Let �AA0

be any quantum state in AA0, and
�AB ¼ N A0!Bð�AA0 Þ. Then

K�ðAiBÞ� ¼ �

1� �
E0ð��1 � 1;N A0!BÞ�;

where for s ¼ ��1 � 1,

E0ðs;N A0!BÞ� :¼ � ln Tr½TrAð�ABÞ1=ðsþ1Þ�sþ1:

Information processing task.—Suppose a quantum sys-
tem S and a reference system A have a state j�iAS. Alice
only has access to the system S and not to A. Alice wants to
send her part of the shared state with A to Bob using n

independent uses of a quantum channel N A0!B such that
at the end of the communication protocol chain, Bob’s
shared state with the reference A is arbitrarily close to
the state Alice shared with A. We shall callR the commu-
nication rate given by R :¼ ln jSj=n, where jSj is the
dimension of H S. We shall assume that the state of S is
given by 1=jSj, i.e., the completely mixed state.
To this end, Alice performs an encoding operation given

by ES!A0n
to get �AA0n ¼ ES!A0nð�ASÞ. Alice transmits the

system A0n overN A0n!Bn ¼ ðN A0!BÞ�n and Bob receives
the state �ABn ¼ N A0n!Bn½ES!A0nð�ASÞ�. Bob applies a
decoding operation on his part of the received state to get

�AŜ ¼ T Bn!ŜfN A0n!Bn½ES!A0nð�ASÞ�g. The performance
of the protocol is quantified by the fidelity given by

Fð�AS; �AŜÞ ¼ h�jAS�AŜj�iAS. If a protocol promises a
fidelity not smaller than F, then we shall refer to such a
protocol as a ðn;R; 1� FÞ code.

TABLE I. Gallager’s exponent (that gives an exponential
upper bound on reliability) for various cases.

Information Channel Proposed by

Classical Classical Arimoto [7]

Classical Quantum Ogawa and Nagaoka [8]

Quantum Quantum (this Letter)
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The maximum rate per channel use for this protocol
in the limit of a large number of channel uses and fidelity
arbitrarily close to 1 was proved in a series of papers (see
Refs. [18–25]). Let the coherent information of the channel

N A0!B be defined as QðN Þ :¼ max
�AA0 IðAiBÞ�, where

�AB ¼ N A0!Bð�AA0 Þ, IðAiBÞ� :¼HðBÞ��HðA;BÞ�, and
HðAÞ� is the von Neumann entropy of a quantum state �
in a system A given by HðAÞ� ¼ �Tr� ln�. The capacity
of the channel is now given by the regularization
QregðN Þ :¼ lim n!1QðN �nÞ=n.

We now prove an inequality involving the fidelity and
the rate.

Theorem 1.—For F � e�nR, any ðn;R; 1� FÞ code
satisfies

D �ðF k e�nRÞ � K�ðAiBnÞ�:
Proof.—Let fjiiASg be an orthonormal basis for H AS

with j1iAS ¼ j�iAS. Consider a CPTP quantum map

F AŜ!C where jCj ¼ 2 with Kraus operators j0iCh1jAS,
and fj1iChijASg, i ¼ 2; 3; . . . ; jASj. Let �C

0 ¼ 0C and

�C
1 ¼1C. Then for all �Ŝ, we have F ð�AŜÞ¼F0�C

0

þð1�F0Þ�C
1 , F ð1��ŜÞ¼e�nR�C

0 þðenR�e�nRÞ�C
1 ,

where F0 ¼ h�jAS�AŜj�iAS. We now have the following
inequalities

K�ðAiBnÞ� �a inf
�Ŝ

D�ð�AŜ k 1 � �ŜÞ

�b inf
�Ŝ

D�½F0�C
0 þ ð1� F0Þ�C

1 k e�nR�C
0

þ ðenR � e�nRÞ�C
1 �¼c D�ðF0 k e�nRÞ

�d D�ðF k e�nRÞ;
where a and b follow from the data processing inequality
and the definition of K�, c follows since the quantity

D�ðF0 k e�nRÞ is independent of �Ŝ, and d from the
Property 2 of D�. h

The constraint F � e�nR may not be seen as weakening

the bound because, if the constraint is violated, i.e., F �
e�nR, then this, by itself, would imply an exponential
convergence of F to 0. We first note that

D �ðF k e�nRÞ � �

�� 1
ln Fþ nR (6)

and it follows from Lemma 2 and Theorem 1 that

F � esnR�E0½s;ðN A0!BÞ�n�� ; (7)

which gives us the quantum Gallager’s exponent. The
properties of E0 are studied by the following theorem.

Theorem 2.—For any quantum state �AB, s 2 ½�1=2; 0Þ,
the function

gðsÞ :¼ � ln Tr½TrAð�ABÞ1=ðsþ1Þ�sþ1;

satisfies

gð0Þ ¼ 0;
@gðsÞ
@s

��������s¼0
¼ IðAiBÞ�;

and gðsÞ þ ðsþ 1Þ ln jAj is an increasing function in s.
We note here that only the two above mentioned prop-

erties of the quantum Rényi divergence are used for our
results. Hence, if the Rényi divergence is replaced by any
other divergence that satisfies these two properties, then
Theorem 1 shall hold for that divergence as well. The
noncommutative hockey-stick divergence that we now
define is one such example that for �, � � 0, and � � 1
is given by Dð�jj�Þ ¼ Trð�� ��Þþ, where �þ is the
positive part of a Hermitian matrix � ¼ �þ � ��, �þ,
�� � 0. It can be regarded as a noncommutative general-
ization of the classical f-relative entropy (see Ref. [26])
using the hockey-stick function fðxÞ ¼ ðx� �Þþ [27]. We
similarly define a derived quantity as

K ðAiBÞ� :¼ inf
�B2SðH BÞ

Dð�AB k 1 � �BÞ:

Quantum erasure channel with maximally entangled
inputs.—We show that the fidelity would decrease expo-
nentially with the number of channel uses for rates above
the capacity for maximally entangled inputs that have the
full Schmidt rank.
A quantum erasure channel transmits the input state with

probability 1� p and ‘‘erases’’ it, i.e., replaces it with an
orthogonal erasure state with probability p [28] (see also
Ref. [29]). The dimension of the output Hilbert space is
one larger than that of the input.

A quantum erasure channel N A0!B
p , defined in

Ref. [3], is given by the following Kraus operators

f ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 � pÞp PjA0j
i¼1 jiiBhijA0

;
ffiffiffiffi
p

p jeiBh1jA0
; . . . ;

ffiffiffiffi
p

p jeiBhjA0jjA0 g,
i ¼ 1; . . . ; jA0j, p 2 ½0; 1�, jBj ¼ jA0j þ 1, fjiiA0 g, fjiiBg are
orthonormal bases in H A0 and H B, respectively, and
jeiB ¼ jjiB for j ¼ jBj. The action of the channel can be
understood as follows

N A0!B
p ð�AA0 Þ ¼ ð1� pÞ�AB þ p�A � jeihejB:

Let �AB ¼ GA0!Bð�AA0 Þ, where G increases the dimension
but leaves the state intact. Then with probability 1� p, the
channel leaves the state as �AB and with probability p, it
erases the state and replaces it with jeiB. It is not difficult to
see that �AB is orthogonal to �A � jeihejB.
Taking this further for n channel uses, let �ABn ¼

ðGA0!BÞ�nð�AA0nÞ. The output can be written as the sum
of 2n orthogonal density matrices where each of these
matrices results from i erasures i 2 f0; . . . ; ng and this
occurs with probability ð1� pÞn�ipi. The number of states
that have suffered exactly i erasures is ðniÞ.
Let Bi1 � � �Bin�k

be the quantum systems that have not

suffered erasures and we could write the state in this case
using �ABn

as
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ABi1

...Bin

i1;...;in�k
¼ �ABi1

...Bin�k �Ok
j¼1

jeihejBin�kþj :

It now follows that

�ABn ¼ X
2nterms

�k;n � 	
ABi1

...Bin

i1;...;in�k
; (8)

where �k;n ¼ ð1� pÞn�kpk.

To prove the strong converse, we find an upper bound for

K�ðAiBnÞ. We assume that �AA0n
is a maximally entangled

state with a Schmidt rank of dnA where dA ¼ jA0j. Note that
this is the capacity-achieving input for this channel and
QðN Þ ¼ ð1� 2pÞþ lndA is the single-letter quantum ca-
pacity for this channel [30] (see also Ref. [3]). Note that

dkA � �AA0
1���A0

n�k is a projector of rank dkA and �
A0
1...A

0
n�k is the

maximally mixed state.
Theorem 3.—The strong converse holds for the quantum

erasure channel for the above chosen maximally entangled
channel inputs.

Proof.— Note the following set of inequalities for s ¼
��1 � 1, �2ð1;2�

K�ðAiBnÞ¼a �1

s
lnTr½TrAð�ABnÞ��1=�

¼b �1

s
ln

X
2nterms

�k;nTr½TrAð	ABi1
...Bin

i1;...;in�k
Þ��1=�

�c �1

s
ln

� X
2nterms

�k;nexp

��K�ðAiA0
i1
. . .A0

in�k
Þ

s

��
;

where a follows from Lemma 2, b follows from Eq. (8) and
the orthogonality of 	 ’s and c follows because K� satisfies

monotonicity and Lemma 2. Using the fact that dkA �
�
AA0

i1
...A0

in�k is a projector of rank dkA, we get K�ðAiBnÞ �
nE0ðsÞ=s where we define (with some abuse of notation)

E0ðsÞ :¼ � ln ½ð1� pÞd�s
A þ pdsA�

and E0ð0Þ ¼ 0. Using (6), we have

F � exp fn½sR� E0ðsÞ�g:
Furthermore, for p 2 ½0; 1=2�,

lim
s"0

E0ðsÞ
s

¼ QðN Þ:

Hence, for all R>QðN Þ, 9s2½�1=2;0Þ such that
R�E0ðsÞ=s>0, and thus the strong converse holds. For
p > 1=2, E0

0ð0Þ< 0 and, hence, using similar arguments as

above, for any R> 0, the strong converse holds. h
An alternate proof of Theorem 3 using the hockey-stick

divergence is provided in the Supplemental Material [31].
To summarize our results, we have given an exponential

upper bound on the reliability of quantum information
transmission. The bound is fundamental in the same vein
as the bounds known for the transmission of classical
information across classical or quantum channels (see

Refs. [7,8,10]) and holds under general conditions. We
then apply our bound to yield the first known example
for exponential decay of reliability at rates above the
capacity for quantum information transmission.
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