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Entangled photon states attract tremendous interest as the most vivid manifestation of nonlocality of

quantum mechanics and also for emerging applications in quantum information. Here we propose a

mechanism of generation of polarization-entangled photons, which is based on the nonlinear optical

interaction (four-wave mixing) in graphene placed in a magnetic field. Unique properties of quantized

electron states in a magnetized graphene and optical selection rules near the Dirac point give rise to a giant

optical nonlinearity and a high rate of photon production in the mid- or far-infrared range. A similar

mechanism of photon entanglement may exist in topological insulators where the surface states have a

Dirac-cone dispersion and demonstrate similar properties of magneto-optical absorption.

DOI: 10.1103/PhysRevLett.110.077404 PACS numbers: 78.67.Wj, 42.50.Ct, 42.65.Lm

To date, the most widely used method of generating
entangled photons is based on the spontaneous parametric
down-conversion in a nonlinear crystal possessing a
second-order nonlinearity [1,2]. In this process, a photon
from a strong pump field at frequency !p splits into two

signal photons, !p ¼ !1 þ!2, which can be entangled in

polarization, frequency, and wave vector. Another way to
generate quantum-correlated photons through a parametric
nonlinear optical process is spontaneous four-wave mixing
in the optical fibers, in which two pump photons are
converted into two signal photons, 2!p ¼ !1 þ!2, using

a third-order nonlinearity of silica [3]. This process is
obviously compatible with fiber communication technolo-
gies, although it does not directly lead to polarization
entanglement. In both nonlinear processes the photon
pair production efficiency is very low. An alternative
approach using the radiative decay of biexcitons in semi-
conductor quantum dots [4–6] allows photon pairs to be
generated on demand but requires cooling down to liquid
helium temperatures.

Graphene has unusual electronic and optical properties
stemming from linear, massless dispersion of electrons
near the Dirac point and the chiral character of electron
states [7,8]. Magneto-optical properties of graphene and
thin graphite layers are particularly peculiar, showing mul-
tiple absorption peaks and unique selection rules for tran-
sitions between Landau levels [9–12]. Recent progress in
growing high-quality epitaxial graphene and graphite with
high room-temperature mobility and strong magneto-
optical response has attracted a lot of interest and paved
the way to new applications in infrared optics and pho-
tonics [13–15]. The time is ripe to explore the nonlinear
and quantum optical properties of a magnetized graphene
and their applications. We have recently shown that
graphene placed in a magnetic field possesses perhaps
the highest infrared optical nonlinearity among known
materials [11]. Here we argue that an extremely strong

nonlinearity of graphene in combination with its peculiar
properties of the Landau levels open new avenues for
generation of the nonclassical light states, in particular
polarization-entangled photons.
The proposed scheme is shown in Figs. 1 and 2. Here

the energies of the Landau levels for electrons near the

Dirac point are given by "n ¼ sgnðnÞ@!c

ffiffiffiffiffiffijnjp
, where

n ¼ 0;�1;�2; . . . , !c ¼
ffiffiffi
2

p
�F=lc, �F � 108 cm=s is

the electron Fermi velocity, and lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
is the mag-

netic length. We assume that the graphene is biased or
doped so that the Fermi level is between the states with
n ¼ �2 and n ¼ �1; i.e., the state n ¼ �2 is occupied
and the states above are empty in the absence of pumping.
Two incident strong pump fields at frequencies !HF and
!LF resonant to the transitions from n ¼ �2 to n ¼ 1 and
from n ¼ �2 to n ¼ �1, respectively, generate two signal
fields with opposite senses of the circular polarization
at frequencies !ð�Þ and !ðþÞ that are close to resonance

with transitions from n ¼ �1 to 0 and from n ¼ 0 to 1.

FIG. 1 (color online). Geometry of the proposed experiment.
Two pump fields at frequencies!HF and!LF normally incident on
a sheet of graphene placed in amagnetic fieldB generate entangled
photons with opposite senses of the circular polarization.
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Note that these transitions have the same energy.
Therefore, the presence of the unshifted n ¼ 0 Landau
level enables convenient entanglement in the polarization
degree of freedom for two photons with nearly equal
energies. All transition frequencies are easily tunable
with a magnetic field.

The polarizations for the allowed transitions are indi-
cated in Fig. 2. Here LHS and RHS denote left-hand and
right-hand circularly polarized light with polarization vec-

tors in the (x, y) plane of the graphene defined as eð�Þ ¼
ðx0 � iy0Þ=

ffiffiffi
2

p
, respectively. Peculiar selection rules for

graphene, �jnj ¼ �1 as opposed to �n ¼ �1 for elec-
trons with usual parabolic dispersion, allow the transition
fromn ¼ �2 to 1. The dipolematrix elements of the allowed
transitions dmn � @e�F=ð"n � "mÞ grow fast (� �) with
increasing wavelength, and reach a large magnitude iAfter
introducing creation or far-infrared range; e.g., jd12j=e ¼
13 nm for B ¼ 1 T (� ¼ 34 �m). This enables an
extremely high resonant third-order nonlinearity [11]. Note
also that the states n ¼ �1, 0, and 1 have a low population
when the intensities of the optical pumps are belowsaturation
and @!c � kBT. These factors lead to a high rate of photon
generation and a high signal to noise ratio.

In order to determine the optimal conditions for entan-
glement and the photon generation rate, we solve coupled
equations for Heisenberg operators of the electron and
signal photon fields, assuming that the strong pump fields
are classical. Consider quasiparticles (‘‘electrons’’) on
Landau levels described by stationary states jmi and en-
ergy levels "m. After introducing creation and annihilation

operators of an electron, âymj0i ¼ jmi, ânjni ¼ j0i, one can
define a coordinate-dependent density-matrix operator,

�̂mnðr; tÞ ¼ 1
�Vr

P
jâ

y
j;nðtÞâj;mðtÞ, where the index j numer-

ates individual electrons and the summation is carried

over all electrons within a small volume�Vr in the vicinity
of a point with radius-vector r. Assuming that the operators
in different points of space commute with each other, the
commutation relations become

½�̂qpðrÞ; �̂mnðr0Þ� ¼ �ðr� r0Þð�̂mpðrÞ�qn � �mp�̂qnðrÞÞ:
(1)

Using the above density operator, one can write the
Heisenberg operator of any physical quantity xðr; tÞ as
x̂ ¼ P

n;mxnm�̂mnðr; tÞ. In particular, the optical polariza-

tion is given by P̂ðr; tÞ ¼ P
n;mdnm�̂mn.

The Heisenberg-Langevin equation for the density
operator takes the form

_̂�mn ¼ � i

@
ðĥmv�̂vn � �̂mvĥvnÞ þ R̂mnð�̂mnÞ þ F̂mn; (2)

independently on whether âm, â
y
n operators obey the com-

mutation relations for fermions or bosons.

In Eq. (2) ĥnm ¼ "n�nm � dnmÊðr; tÞ is the matrix ele-

ment of the Hamiltonian operator Ĥ ¼ ĥnmâ
y
n âm describing

interaction with the electric field Êðr; tÞ in the dipole ap-

proximation and R̂mn is the relaxation operator, for which

we will choose the simplest form R̂m�n ¼ ��mn�mn. The

Langevin noise operator F̂mn satisfies F̂mn ¼ F̂y
nm and

hF̂mni ¼ 0. Here the averaging h. . .i is taken both over the
reservoir and over the initial state j�Ei of the electron

system. The commutators and correlators for F̂mn are de-
rived in the Supplemental Material [16].
For a monochromatic electric field of a given field

mode propagating in a dispersive medium with dielectric

constant �ð!Þ, Ê ¼ Ê0e
�i!tþikz þ Êy

0e
�i!tþikz, one can

define the operators of annihilation and creation of

‘‘photons in a medium’’ ĉ0 and ĉy0 [17] as Ê0 ¼ eE0ĉ0,

Êy
0 ¼ e�E0ĉ

y
0 . Here e is a unit vector of the polarization

of the field and

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�@!2=

@½!2�ð!Þ�
@!

s

is the normalization constant. With this normalization of
the field operators the energy of the field in a volume V is

given by Ŵ ¼ @!ðVĉy0 ĉ0 þ 1
2Þ and their commutation rela-

tion reads ½ĉ0; ĉy0 � ¼ 1
V . If the field amplitude varies in time

and space over the scales T and L much larger than the
period, T � 2�=!, and wavelength, L � 2�=k, one can
always choose the volume of quantization L3 � V �
ð2�=kÞ3 and introduce space- and time-dependent creation

and annihilation operators ĉ0ðr; tÞ and ĉy0 ðr; tÞ [17],

which determine the photon density operator n̂ph ¼
ĉy0 ðr; tÞĉ0ðr; tÞ.
Of course, there is no need to consider propagation of

the fields through a monolayer of graphene. However, we
will keep our formalism general to make it applicable to a

FIG. 2 (color online). Energy levels and optical transitions
involved in resonant parametric generation of entangled photons
in graphene. Left: Landau levels near the Dirac point super-
imposed on the linear electron dispersion without the magnetic
field. Right: A scheme of the entangled photon generation
process in the four-level system of LLs with energy quantum
numbers n ¼ �2, �1, 0, 1 that were renamed as states 1, 2, 3,
and 4 for convenience of notation.
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multilayer graphene layer which shows similar physics
near the H point; see the discussion below. The 2D film
limit can be retrieved from general expressions by taking
the limit of an infinitely small layer thickness.

A more realistic field consists of a certain number of
modes propagating within a paraxial beam of a cross-
sectional area S?. If we keep the same notation ĉ0 for
the field operators describing the field amplitude in the

whole beam, their commutator becomes ½ĉ0; ĉy0 � ¼ �j=V
where �j is the number of modes. The total flux density

of photons in a state j�Fi is then given by Q ¼
�grS?h�Fjĉy0 ĉ0j�Fi, where �gr ¼ 2c2k

@ð!2�ð!ÞÞ=@! is a group

velocity. It is convenient to go from a discrete set of modes
to a continuous spectral interval �! 	 !. The density of
states in a volume V is equal to 	 ¼ Vk2=8�3�gr and the

wave vectors of the modes constituting a beam occupy
the solid angle �o � 4�2=k2S?. One can always choose
a volume V that is small on the scale of spatial variation of
the operator ĉ0ðr; tÞ, but which still includes many wave-
lengths of light. As a result, we arrive at the commutation
relations for the operator of the field amplitude and its
spectral harmonics that are specified in Eqs. (14–16) of
the Supplemental Material [16].

The equation of motion for the field amplitude operator of
each of the two signal fields can be derived from the
Heisenberg equation for the operators of the field and electric
polarization (see page 3 of the Supplemental Material [16]):�

@

@t
þ �gr

@

@z

�
ĉ0 ¼ 4�i!2

E0@½!2�ð!Þ�=@! P̂0e
�: (3)

Equation (3) includes all the relevant effects: linear
dispersion determines the group velocity of the wave,

whereas the slowly varying polarization amplitude P̂0 on
the right-hand side includes nonlinearity, dissipation, and
fluctuations. At the boundary zb between the medium and
the vacuum, the boundary condition for the field operator

takes the form (neglecting back reflection) ĉ0ðzbÞjvacuum ¼ffiffiffiffiffi
�gr

c

q
ĉ0ðzbÞjmedium, which satisfies the conservation of the

Poynting flux. Equation (2) is to be solved together with
Eq. (3) for both signal fields in order to determine the
generated signal and noise.

In the four-wave mixing process depicted in Fig. 2, the
total field consists of the four waves: two strong classical
pump fields at high and low frequencies resonant to the
corresponding transitions between the Landau levels,
!HF ¼ !41 and !LF ¼ !21, and two signal fields that
are described by operators

Êðþ;�Þ ¼ eðþ;�ÞE0ĉðþ;�Þe�i!ðþ;�Þtþikðþ;�Þz þ H:c: (4)

The signal frequencies may have a detuning, !ðþ;�Þ ¼
!43;32 ��;� 	 !þ;� satisfying the frequency-matching

condition !HF ¼ !LF þ!ðþÞ þ!ð�Þ. We also assumed

that !ðþÞ ’ !ð�Þ ¼ h!i in the normalization constant E0.

The density-matrix equations (2) for our four-level sys-
tem are given in the Supplemental Material [Eq. (22)] [16].
Solving them in the steady state and in linear approxima-
tion with respect to weak signal fields, we find that optimal
conditions for the entanglement are realized when the
Fermi level is close to the state j1i (n ¼ �2) and the
populations of all states above are low. This is possible
when the magnetic field is strong enough, kBT 	 @!c, and
Rabi frequencies of the pump fields are below saturation:
j�HF;LFj 	 h�i. Here the Rabi frequencies are defined as

�HF ¼ d�
14
EHF

@
, �LF ¼ d�

12
ELF

@
, and we assume for simplic-

ity that all scattering rates �mn are of the same value h�i.
The latter assumption can be easily dropped once the
relaxation rates are known for any particular sample. If,
in addition, the detuning is sufficiently large, h�i 	 �, the
only place in Eqs. (22) in the Supplemental Material [16]
where we have to take into account nonzero populations of

the excited states are the Langevin noise terms F̂ðþ;�Þ 

F̂43;32. Solving the density-matrix equations in the steady

state and neglecting the terms of the order of ðh�i=�Þ2, we
arrive at the following expression for the operator of the
polarization amplitude at the frequency of the signal fields:

P̂ðþ;�Þ � eðþ;�Þð
Êy
ð�;þÞ � idðþ;�ÞF̂ðþ:�Þ=�Þ; (5)

where


 ¼ NdðþÞdð�Þ
@�

ð�21 þ �41Þ�HF�
�
LF

�21�41�42

� Nd2

@�

�2
p

h�i2 ; (6)

and we denoted �2
p ¼ �HF�

�
LF, dðþ;�Þ ¼ d43;32, d ¼

@e�F=!32, and N ¼ h�Ej�̂11j�Ei.
Using the polarization equation (5) as a source in Eq. (3),

we obtain the following coupled equations for the signal
field operators:�

@

@z
þ 1

�gr

@

@t

�
ĉðþÞ ¼ i�ĉyð�Þ þ ĜðþÞ;

�
@

@z
þ 1

�gr

@

@t

�
ĉyð�Þ ¼ �i��ĉðþÞ þ Ĝy

ð�Þ; (7)

where the coefficient of the parametric coupling is � ¼
2�
 h!i2

c2hki and the noise term

Ĝðþ;�Þ ¼ �2�i
h!i2
c2hki

dðþ;�ÞF̂ðþ;�Þ
E0�

: (8)

Here we again neglected a small difference between the
central frequencies of the signal fields in the prefactors,
assuming !ðþÞ ¼ !ð�Þ ¼ h!i and hki ¼ h!i=c.
In the optimal limit of j�pj 	 h�i 	 j�j, the noise

terms and the Raman scattering of the pump fields into
the signal modes can be neglected and the solution for the
fields exiting a layer of thickness L takes a particularly
simple and transparent form:
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ĉðþÞðL; tÞ ¼ cosh ð�ÞĉðþÞð0; t� L=�grÞ
� iei
 sinh ð�Þĉyð�Þð0; t� L=�grÞ; (9)

and similarly for ĉð�ÞðL; tÞ after exchanging (þ) and (� )

subscripts. Here the parametric gain factor � ¼ j�jL and
� ¼ j�jei
.

Equation (9) clearly shows the emergence of quantum
correlations between the signal photons with opposite
circular polarizations. In particular, consider the boundary
condition at z ¼ 0 corresponding to a completely uncorre-
lated state of vacuum fluctuations within the spectral band-
width �!. Then one can obtain from Eq. (9) that the
photon fluxes in two signal fields exiting the layer at
z ¼ L are completely correlated:

h0jQ̂ðþÞðLÞj0i ¼ hjQ̂ð�ÞðLÞj0i ¼ �!

2�
sinh2�;

h0jðQ̂ðþÞðLÞ � Q̂ð�ÞðLÞÞ2j0i ¼ 0: (10)

Here Q̂ðþ;�ÞðLÞ ¼ cS?ĉ
y
ðþ;�ÞðLÞĉðþ;�ÞðLÞ are operators of

the photon fluxes. The correlated (þ) and (�) photons can
then be used to prepare the desired polarization-entangled
states. The second equation in Eqs. (10) corresponds to the
Manley-Rowe relations for the parametric process. It also
follows from Eq. (9) that the scheme could be used to
amplify the light with a nonclassical statistics or exchange
the statistical properties between (þ) and (�) photons.
The magnitude of �! is likely to be limited by the band-
width of a detection system.

The Schrödinger’s quantum state of entangled photons
at the exit z ¼ L from the graphene layer can be calculated
in the limit of small parametric gain � 	 1 by comparing
the average electric field squared calculated using
Schrödinger’s wave function and using our Heisenberg’s
solution Eq. (9); see Sec. IV A of the Supplemental
Material [16]. The resulting wave function clearly
describes an entangled state: �ðLÞ ¼ j0ðþÞij0ð�Þi �
iei
�j1ðþÞij1ð�Þi þOð�2Þ. To find the terms of higher order

in �, one has to calculate the average of higher order
moments of the electric field, as described in the
Supplemental Material [16].

The solution Eq. (9) can be applied to predict the mea-
surement outcome of any detection scheme sensitive to
quantum correlations, for example, the heterodyne detec-
tion scheme described in Ref. [18]. As shown in Sec. IV B
of the Supplemental Material [16], using Eq. (9) in calcu-
lating the average power of a heterodyned signal leads to
an expression dependent on the phase difference between
(þ) and (�) signal photons, which is a signature of
entanglement.

If noise terms Ĝþ� in Eq. (7) are taken into account, the
field equations are still straightforward to solve, although
the procedure becomes more cumbersome and has been
moved to the Supplemental Material [16]. As a result,

the photon fluxes in Eqs. (10) acquire additional noise
terms:

h0jQ̂ðþÞðLÞj0i � �!

2�

�
sinh2�þ �43

4j�j��ðþÞðsinh 2�þ 2�Þ

þ �32

4j�j�
~�ð�Þðsinh 2�� 2�Þ

�
;

and similarly for h0jQ̂ð�ÞðLÞj0i after exchanging (þ) and

(�) subscripts. Here the factors �ðþ;�Þ¼2�h!i2�
N4;3jdðþ;�Þj2=ðc2hki@�Þ and ~�ðþ;�Þ¼2�h!i2N3;2jdðþ;�Þj2=
ðc2hki@�Þ are of the order of the parametric coupling term
j�j [see Eq. (28) in the Supplemental Material [16]];
N2;3;4 ¼ h�Ej�̂22;33;44j�Ei.
From this solution one can see that the noise contribu-

tion can be neglected if j�j � h�i provided the parametric
gain is high enough: � � 1. For a weak amplification
� 	 1 the condition for a large signal to noise ratio is
more stringent: � � h�i=�. If this condition is not satis-
fied or if one of the states 2, 3, or 4 acquires a large
population, then in the steady state the noise is always
comparable to or greater than the signal. In this case the
entangled photons can be generated only in the pulsed
regime during the time of the order of a few relaxation
times 1=�. This is usually the case in resonant schemes of
entanglement in atomic vapors [19,20].
The above analytic results were derived in the limit of

j�pj 	 h�i 	 �. In the general case the equations can be

solved numerically, including the effects of the optical
pumping of electrons to excited states and optical satura-
tion. The resulting parametric gain � per one monolayer of
graphene is plotted in Fig. 3 as a function of the frequency
detuning. As seen from the figure, the magnitude of � is
around 0.01 for �� 10�� 100�p. This corresponds to a

photon flux of about 10�4�!=2�. To increase the value of
� for a higher rate of the twin photon generation, one can
use a stack of graphene monolayers or a thin layer of
graphite. Recent studies showed that a thin graphite
layer maintains high carrier mobility and monolayer-like

0 2 4 6 8 10
0.000

0.005

0.010

0.015

0.020

0.025

FIG. 3 (color online). Parametric gain � per monolayer of
graphene as a function of normalized detuning of the signal
fields �=h�i for the pump field intensity j�pj2 ¼ 0:1h�i2.
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Landau levels / ffiffiffiffiffiffiffiffiffiffijnjBp
near the H point of the Brillouin

zone [13,14], which are detectable in absorption up to
0.5 eV from the Dirac point.

Similar mechanisms of entanglement could exist in
topological insulators where the surface states have a
massless dispersion and demonstrate a similar pattern of
Landau levels [21,22]. The band velocity �F for surface
states in Bi0:91Sb0:09 and Bi2Se3 inferred from measure-
ments in Refs. [21,22] is close to that in graphene, which
suggests an optical nonlinearity of similar strength. Bi2Se3
could be a better candidate because of its larger band
gap �0:3 eV and simpler single-cone band structure of
the surface states. The parametric mechanism discussed in
this Letter could be used to control the quantum state of
electrons in surface states.
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