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We develop a microscopic theory of finite-temperature spin-nematic orderings in three-dimensional

spatially anisotropic magnets consisting of weakly coupled frustrated spin- 12 chains with nearest-neighbor

and next-nearest-neighbor couplings in a magnetic field. Combining a field theoretical technique with

density-matrix renormalization group results, we complete finite-temperature phase diagrams in a wide

magnetic-field range that possess spin-bond-nematic and incommensurate spin-density-wave ordered

phases. The effects of a four-spin interaction are also studied. The relevance of our results to quasi-one-

dimensional edge-shared cuprate magnets such as LiCuVO4 is discussed.
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Introduction.—The quest for novel states of matter has
been attracting much attention in condensed-matter phys-
ics. Among those states, recently, spin-nematic (quadru-
polar) phases have been vividly discussed in the field of
frustrated magnetism [1–10]. The spin-nematic phase is
defined by the presence of a symmetrized rank-2 spin
tensor order, such as hSþr Sþr0 þ H:c:i � 0, and the absence

of any spin (dipolar) moment. Geometrical frustration,
which generally suppresses spin orders, is an important
ingredient for the emergence of spin nematics [1]. In spin- 12
magnets, the spin-nematic operators cannot be defined on
a single site because of the commutation relation of spin- 12
operators. They reside on bonds between different sites
[1,3], which is a significant difference from the quadrupo-
lar phases in higher-spin systems [7]. Due to this property,
it is generally quite hard to develop theories of spin
nematics in spin- 12 magnets, particularly in two- or three-

dimensional (3D) systems. Developing such a theory is a
current important issue in magnetism.

Among the existing models predicting spin-nematic
phases, the spin- 12 frustrated chain with a ferromagnetic

nearest-neighbor coupling J1 < 0 and an antiferromagnetic
(AF) next-nearest-neighbor one J2 > 0 would be the most
relevant in nature because this system is believed to be an
effective model for a series of quasi-1D edge-shared cuprate
magnets such as LiCuVO4 [11–16], Rb2Cu2Mo3O12 [17],
PbCuSO4ðOHÞ2 [18,19], LiCuSbO4 [20], and LiCu2O2

[21]. These quasi-1D magnets hence offer a promising play-
ground for spin-nematic phases.

Low-energy properties of the spin- 12 J1-J2 chain have

been well understood, thanks to recent theoretical efforts
[2–6]. The corresponding Hamiltonian is given by

H ¼ X
n¼1;2

X
j

JnSj � Sjþn �H
X
j

Szj; (1)

where Sj is the spin- 12 operator on site j and H is an

external field. Below the saturation field in the broad
parameter range �2:7 & J1=J2 < 0, the nematic operator
S�j S�jþ1 and the longitudinal spin Szj exhibit quasi-long-

range orders, while the transverse spin correlator hS�j S�0 i
decays exponentially due to the formation of two-magnon
bound states [3]. This phase is called a spin-nematic
Tomonaga-Luttinger (TL) liquid, and it expands down to
a low-field regime. The nematic correlation is stronger
than the incommensurate longitudinal spin correlation in
the high-field regime, while the latter grows stronger in the
low-field regime.
From these theoretical results, the quasi-1D cuprates are

expected to possess incommensurate longitudinal spin-
density-wave (SDW) and spin-nematic long-range orders,
respectively, in low- and high-field regimes at sufficiently
low temperatures. In fact, recent magnetization measure-
ments of LiCuVO4 at low temperatures have detected a
new phase [12] near saturation, and it is expected to be
a 3D spin-nematic phase. Some experiments on LiCuVO4

in an intermediate-field regime find SDW oscillations
[13–15] whose wave vectors agree with the result of the
nematic TL-liquid theory [2,3,5]. Furthermore, the spin
dynamics of LiCuVO4 observed by NMR [16] seems to
be consistent with the prediction from the same theory
[5,6]. However, this nematic TL-liquid picture can be
applicable only above the 3D ordering temperatures. We
have to take into account interchain interactions to explain
how 3D spin-nematic and SDW long-range ordered phases
are induced with lowering temperature. A mean-field the-
ory for the 3D nematic phase of quasi-1D spin- 12 magnets

[9] has been proposed recently, but it cannot be applied
to the SDW phase and does not quantitatively describe
finite-temperature effects. It is obscure how both nematic
and SDW ordered phases are described in a unified way.
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A reliable theory for 3D orderings in weakly coupled
spin- 12 J1-J2 chains is strongly called for.

In this Letter, we develop a general theory for spin-
nematic and incommensurate SDW orders in spatially
anisotropic 3D magnets consisting of weakly coupled
J1-J2 spin chains with arbitrary interchain couplings in a
wide magnetic-field range. Combining field theoretical and
numerical results for the J1-J2 spin chain, we obtain finite-
temperature phase diagrams, which contain both spin-
nematic and SDW phases at sufficiently low temperatures.
We thereby reveal characteristic features in the ordering of
weakly coupled J1-J2 chains, which cannot be predicted
from the theory for the single J1-J2 chain. We also discuss
the relevance of our results to real compounds such as
LiCuVO4.

Model.—Our model of a spatially anisotropic magnet is
depicted in Fig. 1. The corresponding Hamiltonian is
expressed as

H 3D ¼ X
r

H r þH int; (2)

where r ¼ ðry; rzÞ denotes the site index of the square

lattice in the y-z plane, H r denotes the Hamiltonian (1)
for the rth J1-J2 chain along the x axis in a magnetic field

H, and H int is the interchain interaction. In H int, we
introduceweak interchain Heisenberg-type exchange inter-
actions with coupling constants Jyi and Jzi (i ¼ 1; 2; 3)

defined in the x-y and x-z planes, respectively [22].
Spin- 12 J1-J2 chain.—Under the condition jJyi;zi j �jJ1;2j, it is reasonable to choose decoupled J1-J2 spin

chains (H r) as the starting point for analyzing the 3D
model (H 3D). The low-energy effective Hamiltonian for
the nematic TL-liquid phase is given by

H r
eff ¼

Z
dx

X
�¼�

v�

2
½K�ð@x�r�Þ2 þ K�1

� ð@x�r
�Þ2�

þG� sin ð�MÞ sin ð ffiffiffiffiffiffiffi
4�

p
�r� þ �MÞ; (3)

where x ¼ a0j (the length a0 of the J1 bond is set equal to
unity), (�r�ðxÞ, �r�ðxÞ) is the canonical pair of scalar boson
fields, and v� and K� are, respectively, the excitation
velocity and the TL-liquid parameter of the (��, ��)
sector. The sine term makes �� pinned, inducing an
excitation gap in the (��, ��) sector. Physically, the gap
corresponds to the magnon binding energy Eb. On the
other hand, the (�þ, �þ) sector describes a massless
TL liquid. Vertex operators are renormalized as

hei� ffiffiffi
�

p
�þðxÞe�i�

ffiffiffi
�

p
�þð0Þiþ ¼ j2=xj�2Kþ=2 for jxj � 1, in

which h� � �i� denotes the average over the (��, ��) sector.
Spin operators Sj;r are also bosonized as

Szj;r �Mþ@x½�rþþð�1Þj�r��=
ffiffiffiffi
�

p þð�1ÞqA1

	 cosf ffiffiffiffi
�

p ½�rþþð�1Þj�r��þ2�Mqgþ��� ; (4a)

Sþj;r � ei
ffiffiffi
�

p ½�rþþð�1Þj�r��½ð�1ÞqB0þB1

	 cosf ffiffiffiffi
�

p ½�rþþð�1Þj�r��þ2�Mqgþ����; (4b)

whereM ¼ hSzj;ri, q ¼ j
2 (

j�1
2 ) for even (odd) j, and An and

Bn are nonuniversal constants. Utilizing Eqs. (3) and (4),
we can evaluate spin and nematic correlation functions at
zero temperature (T ¼ 0) as follows [3,5,6]:

hSþj S�0 i � B2
0 cos ð�j=2Þð2=jjjÞ1=ð2KþÞg�ðxÞ þ � � � ; (5a)

hSzjSz0i � M2 þ ðA2
1=2Þjhei

ffiffiffi
�

p
��i�j2 cos ½�jðM� 1=2Þ�ð2=jjjÞKþ=2 þ � � � ; (5b)

hSþj Sþjþ1S
�
0 S

�
1 i � ð�1ÞjC0jjj�2=Kþ þ � � � ; (5c)

where g�ðxÞ ¼ he�i
ffiffiffi
�

p
��ðxÞe�i

ffiffiffi
�

p
��ð0Þi�, C0 is a constant,

and we have omitted the index r. The function g�ðxÞ decays
exponentially as x�1=2e�x=�� . The parameter Kþ, which is
less than 2 in the low magnetization regime, monotonically
increases withM [3] andKþ!4 at the saturation. Thus, the
spin-nematic (SN) correlation is stronger than the incom-
mensurate SDW correlation in the high-field regime with
Kþ > 2 and weaker in the low-field regime with Kþ < 2.

The correlation length �� is related to v� via v� ¼
��Eb under the assumption that the low-energy theory for

the (��, ��) sector has Lorentz invariance. The velocity
vþ has the relation vþ ¼ 2Kþ=ð��Þ, where � ¼ @M=@H
is the uniform susceptibility. Since Kþ, ��, Eb, and � are
all determined with reasonable accuracy by using
the density-matrix renormalization group method [3,23],
v� can be quantitatively evaluated as depicted in Fig. 2.
The figure shows that v� is always larger than vþ, in
accordance with the perturbative formulas v� �
v½1� KJ1=ð�vÞ þ � � �� for jJ1j � J2, in which v and K
are, respectively, the spinon velocity and the TL-liquid

J1-J2 chain 

Jy1

J1
y

xz

Jy2

Jy3

ry

ry+1

ry-1

j j+1j-1

J2

FIG. 1 (color online). Spatially anisotropic spin model con-
sisting of weakly coupled spin- 12 J1-J2 chains. We introduce

interchain couplings Jy1;y2;y3 in the x-y plane. Similarly, Jz1 ;z2 ;z3
are present in the x-z plane.
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parameter for the single AF-J2 chain. We also note that vþ
approaches zero at M ! 1

2 .

Analysis of the 3D model.—Let us now analyze the 3D
model (2) startingwith the effective theoryof the J1-J2 chain.
We first bosonize all of the interchain couplings in H int

through Eq. (4). To obtain the low-energy effective theory
for Eq. (2), we trace out the massive (�r�, �r�) sectors in the
Euclidean action Stot ¼ S0 þ Sint via the cumulant expan-
sion S3D

eff ¼ S0 þ hSinti� � 1
2 ðhS2

inti� � hSinti2�Þ þ � � � ,

where S0 and Sint are, respectively, the action for the
TL-liquid part of the (�rþ, �rþ) sectors and that for the
interchain couplings. This corresponds to the series expan-
sion in Jyi;zi=v�. The resultant effective Hamiltonian

is expressed as H 3D
eff ¼ H 0 þH SDW þH SN þ � � � .

Here, H 0 ¼
P

r

R
dx vþ

2 ½Kþð@x�rþÞ2 þ K�1þ ð@x�rþÞ2� is

the TL-liquid part and H SDW and H SN are, respectively,
obtained from the first- and second-order cumulants as
follows:

H SDW ¼ GSDW

Z dx

2

X
r

X
�¼y;z

ðr0¼rþe�Þ

fJ�1 cos ½
ffiffiffiffi
�

p ð�rþ ��r0þÞ� � J�2 sin ½
ffiffiffiffi
�

p ð�rþ ��r0þÞ � �M�

þ J�3 sin ½
ffiffiffiffi
�

p ð�rþ ��r0þÞ þ �M�g; (6a)

H SN ¼ GSN

Z dx

2

X
r

X
�¼y;z

ðr0¼rþe�Þ

½J2�1 � ðJ�2 � J�3Þ2� cos ½
ffiffiffiffiffiffiffi
4�

p ð�rþ � �r
0
þÞ�; (6b)

with coupling constants GSDW ¼ A2
1jhei

ffiffiffi
�

p
��i�j2 [24] and

GSN ¼ � B4
0

4v�

R
dxv�d�g�ðx; �Þ2 (� is imaginary time).

The summations run over all nearest-neighbor pairs of
chains, where r0 ¼ rþ e� (� ¼ y, z), e� denotes the unit
vector along the � axis, and we have assumed that the
field �þ smoothly varies in x. The first-order term H SDW

contains an interchain interaction between the operators
e�i

ffiffiffi
�

p
�r

þ , which essentially induces a 3D spin longitudinal
order. Similarly, the term H SN contains an interchain
interaction between the spin-nematic operators S�j;rS�jþ1;r
ð�1Þje�i

ffiffiffiffiffi
4�

p
�rþ , which enhances a 3D spin-nematic corre-

lation. We should notice that the effective theory H 3D
eff

is reliable under the condition that temperature T is
sufficiently smaller than the binding energy Eb and the
velocities v�.

Both the couplings GSDW;SN can be numerically eval-

uated from the density-matrix renormalization group data
of correlation functions [3,23]: GSDW corresponds to the

amplitude of the leading term of the longitudinal correlator

hSzjSz0i given in Eq. (5) and GSN can be evaluated as GSN �
�v�1�

P
L
j¼1ðj=2Þ1=KþjhSþj S�0 i2. We have checked that the

finite-size correction to the sum is small enough when the
cutoff L is larger than ��. We emphasize that there is no
free parameter in H 3D

eff .

To obtain the finite-temperature phase diagram, we
apply the interchain mean-field (ICMF) approximation
[25,26] to the effective Hamiltonian H 3D

eff . To this end,

we introduce the ‘‘effective’’ SDW operator OSDW ¼
ei�ð1=2�MÞjei

ffiffiffi
�

p
�r

þ and the spin-nematic operator OSN ¼
ð�1Þjei

ffiffiffiffiffi
4�

p
�rþ . Within the ICMF approach, the finite-

temperature dynamical susceptibilities of OA (A ¼ SDW
or SN) above 3D ordering temperatures are calculated as

�Aðkx; k; !Þ ¼ �1D
A ðkx; !Þ

1þ JAeffðkÞ�1D
A ðkx; !Þ ; (7)

where k ¼ ðky; kzÞ is the wave vector in the y-z plane, ! is

the frequency, and the effective coupling constants JAeff are
given by

JSDWeff ðkÞ ¼ GSDW

X
�¼y;z

½J�1
cos k� � J�2

sin ðk� � �MÞ

þ J�3
sin ðk� þ �MÞ�; (8a)

JSNeff ðkÞ ¼ GSN

X
�¼y;z

½J�1

2 � ðJ�2
� J�3

Þ2� cos k�: (8b)

The 1D susceptibilities �1D
A ðkx; !Þ ¼ 1

2

P
je

�ikxj	R	
0 d�e

i!n�hOAðj; �ÞOy
Að0; 0Þiji!n!!þi
 are analytically

computed by using the field theoretical technique (	 ¼
1=T and 
 ! þ0) [27]. Those for SDW and spin-nematic
operators respectively take the maximum at kmax

x ¼
ð12 �MÞ� and �; �1D

SDWðkmax
x ; 0Þ ¼ 2

vþ
ð 4�
	vþ

ÞKþ=2�2 	
sin ð�Kþ

4 ÞBðKþ
8 ; 1� Kþ

4 Þ2 and �1D
SNð�; 0Þ ¼ 2

vþ
ð 4�
	vþ

Þ2=Kþ�2	
sin ð �

Kþ
ÞBð 1

2Kþ
; 1� 1

Kþ
Þ2, where Bðx; yÞ is the beta function.

0 0.2 0.4
0

0.1

: L=120
: L=160
: L=240

J1 /J2 =−0.5

M

E
b

/J
2

(a) 0.2 0.3 0.4 0.5
0

1

2
J1 /J2 =−0.5

: v+/2J2 a0

: v−/2J2 a0

M(b)

v 
 /

2J
2

a 0

0 0.2 0.4
0

0.1

0.2

0.3

: L=120
: L=160
: L=240

J1 /J2 =−1.0

M

E
b

/J
2

(c) 0.2 0.3 0.4 0.5
0

1

2
J1 /J2 =−1.0

: v+/2J2 a0

: v−/2J2 a0

M(d)

v 
 /

2J
2

a 0

FIG. 2 (color online). (a),(c) Magnon binding energy Eb

and (b),(d) excitation velocities v� as a function of M in the
spin-nematic TL-liquid phase in the spin- 12 J1-J2 chain at T ¼ 0.
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The transition temperature of each order is obtained
from the divergent point of its susceptibility at ! ! 0,
which is given by

1þMink½JAeffðkÞ��1D
A ðkmax

x ; 0Þ ¼ 0: (9)

The 3D ordered phase with the highest transition tempera-
ture is realized. From this ICMF scheme, we can determine
the phase diagram for H 3D with an arbitrary combination
of Jyi;zi . This is a significant advantage compared with

previous theories for spin-nematic phases. We note that,
when JAeff approaches zero, the present framework becomes

less reliable and we need to consider the subleading terms
in H 3D

eff .

From Eqs. (8) and (9), we find that the ordering wave
numbers ky;z tend to be a commensurate value ky;z ¼ 0 or �

(see also Ref. [24]). Thus, the SDW ordered phase has the
wave vector kx ¼ ð12 �MÞ� and ky;z ¼ 0 or �. This agrees

with the experimental result in the intermediate-field phase
ofLiCuVO4 [13,14]. For the spin-nematic ordered phase, we
find the commensurate ordering vector ðkx; kyðzÞÞ ¼ ð�; 0Þ
for jJy1ðz1Þj> jJy2ðz2Þ � Jy3ðz3Þj and ðkx; kyðzÞÞ ¼ ð�;�Þ for

jJy1ðz1Þj< jJy2ðz2Þ � Jy3ðz3Þj. This commensurate nature of

kx;y;z in the nematic phase is consistent with Ref. [9].

We show typical examples of obtained phase diagrams
in Fig. 3. When interchain couplings are not frustrated, as
the Jy1;z1 dominant cases of Figs. 3(a) and 3(b), the SDW

ordered phase is largely enhanced and the nematic ordered
phase is reduced to a higher-field regime compared to the
crossover line (Kþ ¼ 2) in the J1-J2 chain. This is because
the effective couplings JSDWeff and JSNeff are respectively

generated from the first- and second-order cumulants,
and therefore JSDWeff is generally larger than JSNeff in non-

frustrated systems with weak interchain couplings. When
both the couplings Jy2;y3 are dominant, we find a similar

tendency. We note that a model with dominant Jy2;y3 has

been proposed for LiCuVO4 [11], where a new phase
expected to be a 3D nematic phase has been observed
only near the saturation [12]. From the calculations for
the cases of jJ1j=J2 ¼ 0:5, 1.0, and 2.0, we find that the
nematic phase region in the M-T phase diagram generally
becomes smaller with increase in jJ1j=J2 since the value
g�ðxÞ in GSN decreases. When there is a certain frustration
in interchain couplings, however, the nematic phase region
can expand, as shown in Fig. 3(c). When the signs of Jy1
and Jy2ðJy3Þ are opposite, JSDWeff becomes small and the 3D

nematic phase expands down to a relatively lower-field
regime. We emphasize that our theory succeeds in quanti-
tatively analyzing the competition between SDW and
nematic ordered phases in quasi-1D magnets.

Effects of a four-spin term.—Finally, we study the effects
of an interchain four-spin interaction. The Hamiltonian we
consider is

H 4 ¼ �J4
X

j;hr;r0i
Sþj;rSþjþ1;rS

�
j;r0S

�
jþ1;r0 þ H:c: (10)

This interaction is a part of the spin-phonon coupling
H sp ¼ �Jsp

P
j;hr;r0iðSj;r � Sj;r0 ÞðSjþ1 ;r � Sjþ1;r0 Þ and there-

fore it really exists in some compounds. One easily finds
that Eq. (10) enhances the spin-nematic ordering. Applying
the field theoretical strategy to the system H 3D þH 4,
we find that JSNeff is replaced with JSNeff � 4J4C0ðcos ky þ
cos kzÞ. We thus obtain the phase diagram forH 3D þH 4,
as shown in Fig. 4. Comparing Figs. 3(a) and 4, we see that
an interchain four-spin interaction definitely enhances the
3D nematic phase even if its coupling constant J4 is small.
Since J4 is usually positive, it favors ferrotype nematic
ordering along the y and z axes; i.e., ky;z ¼ 0.

Conclusion.—We have constructed finite-temperature
phase diagrams for 3D spatially anisotropic magnets,
which consist of weakly coupled spin- 12 J1-J2 chains in

an applied magnetic field. Incommensurate SDWand spin-
nematic ordered phases appear at sufficiently low tempera-
tures, triggered by the nematic TL-liquid properties in the
J1-J2 spin chains. We reveal several natures of orderings in
the coupled J1-J2 chains: The 3D nematic ordered phase is
generally smaller than the 1D nematic dominant region,

T
/J

2

M

(a)

J1 /J2 =-0.5

Jy1 /J2 =Jz1 /J2 =0.005

: TSDW /J2

: TSN /J2SDW SN

SDW 
dominant

nematic 
 dominant

nematic 
TL liquid

T
/J

2

M

(b)

J1 /J2 =-1.0

Jy1 /J2 =Jz1 /J2 =0.005

: TSDW /J2

: TSN /J2SDW

nematic 
TL liquid

T
/J

2

M

(c)

J1 /J2 =-0.5

Jy1 /J2 =0.01

: TSDW /J2

: TSN /J2

Jz1 /J2 =0.001

Jy2 /J2 =Jy3 /J2 =-0.005

SDW SN

nematic 
TL liquid

FIG. 3 (color online). Phase diagrams of the weakly coupled
J1-J2 chains (2) in the M-T plane, which are derived from the
ICMF approach. The temperatures TSDWðSNÞ denote the 3D SDW

(nematic) transition points. The vertical dashed lines denote the
crossover lines between nematic dominant and SDW dominant
TL liquids in the 1D J1-J2 chain.
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while it can be larger if we somewhat tune the interchain
couplings. The ordering wave numbers ky;z tend to be 0 or

�, and a small four-spin interaction H 4 efficiently helps
the 3D nematic ordering. We finally note that our theory
can also be applied to AF-J1 systems.
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140402(R) (2009).

[5] M. Sato, T. Momoi, and A. Furusaki, Phys. Rev. B 79,
060406(R) (2009).

[6] M. Sato, T. Hikihara, and T. Momoi, Phys. Rev. B 83,
064405 (2011).

[7] See, for example, K. Penc and A.M. Läuchli, in
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