Spin-Nematic and Spin-Density-Wave Orders in Spatially Anisotropic Frustrated Magnets in a Magnetic Field

Masahiro Sato, ¹ Toshiya Hikihara, ² and Tsutomu Momoi³

¹Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan

²Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan

³Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

(Received 10 August 2012; revised manuscript received 7 January 2013; published 15 February 2013)

We develop a microscopic theory of finite-temperature spin-nematic orderings in three-dimensional spatially anisotropic magnets consisting of weakly coupled frustrated spin- $\frac{1}{2}$ chains with nearest-neighbor and next-nearest-neighbor couplings in a magnetic field. Combining a field theoretical technique with density-matrix renormalization group results, we complete finite-temperature phase diagrams in a wide magnetic-field range that possess spin-bond-nematic and incommensurate spin-density-wave ordered phases. The effects of a four-spin interaction are also studied. The relevance of our results to quasi-one-dimensional edge-shared cuprate magnets such as LiCuVO₄ is discussed.

DOI: 10.1103/PhysRevLett.110.077206 PACS numbers: 75.10.Jm, 75.10.Pq, 75.30.Fv

Introduction.—The quest for novel states of matter has been attracting much attention in condensed-matter physics. Among those states, recently, spin-nematic (quadrupolar) phases have been vividly discussed in the field of frustrated magnetism [1-10]. The spin-nematic phase is defined by the presence of a symmetrized rank-2 spin tensor order, such as $\langle S_r^+ S_{r'}^+ + \text{H.c.} \rangle \neq 0$, and the absence of any spin (dipolar) moment. Geometrical frustration, which generally suppresses spin orders, is an important ingredient for the emergence of spin nematics [1]. In spin- $\frac{1}{2}$ magnets, the spin-nematic operators cannot be defined on a single site because of the commutation relation of spin- $\frac{1}{2}$ operators. They reside on bonds between different sites [1,3], which is a significant difference from the quadrupolar phases in higher-spin systems [7]. Due to this property, it is generally quite hard to develop theories of spin nematics in spin- $\frac{1}{2}$ magnets, particularly in two- or threedimensional (3D) systems. Developing such a theory is a current important issue in magnetism.

Among the existing models predicting spin-nematic phases, the spin- $\frac{1}{2}$ frustrated chain with a ferromagnetic nearest-neighbor coupling $J_1 < 0$ and an antiferromagnetic (AF) next-nearest-neighbor one $J_2 > 0$ would be the most relevant in nature because this system is believed to be an effective model for a series of quasi-1D edge-shared cuprate magnets such as LiCuVO₄ [11–16], Rb₂Cu₂Mo₃O₁₂ [17], PbCuSO₄(OH)₂ [18,19], LiCuSbO₄ [20], and LiCu₂O₂ [21]. These quasi-1D magnets hence offer a promising playground for spin-nematic phases.

Low-energy properties of the spin- $\frac{1}{2}$ J_1 - J_2 chain have been well understood, thanks to recent theoretical efforts [2–6]. The corresponding Hamiltonian is given by

$$\mathcal{H} = \sum_{n=1,2} \sum_{j} J_n S_j \cdot S_{j+n} - H \sum_{j} S_j^z, \tag{1}$$

where S_j is the spin- $\frac{1}{2}$ operator on site j and H is an external field. Below the saturation field in the broad parameter range $-2.7 \lesssim J_1/J_2 < 0$, the nematic operator $S_j^{\pm}S_{j+1}^{\pm}$ and the longitudinal spin S_j^z exhibit quasi-long-range orders, while the transverse spin correlator $\langle S_j^{\pm}S_0^{\mp} \rangle$ decays exponentially due to the formation of two-magnon bound states [3]. This phase is called a spin-nematic Tomonaga-Luttinger (TL) liquid, and it expands down to a low-field regime. The nematic correlation is stronger than the incommensurate longitudinal spin correlation in the high-field regime, while the latter grows stronger in the low-field regime.

From these theoretical results, the quasi-1D cuprates are expected to possess incommensurate longitudinal spindensity-wave (SDW) and spin-nematic long-range orders, respectively, in low- and high-field regimes at sufficiently low temperatures. In fact, recent magnetization measurements of LiCuVO₄ at low temperatures have detected a new phase [12] near saturation, and it is expected to be a 3D spin-nematic phase. Some experiments on LiCuVO₄ in an intermediate-field regime find SDW oscillations [13–15] whose wave vectors agree with the result of the nematic TL-liquid theory [2,3,5]. Furthermore, the spin dynamics of LiCuVO₄ observed by NMR [16] seems to be consistent with the prediction from the same theory [5,6]. However, this nematic TL-liquid picture can be applicable only above the 3D ordering temperatures. We have to take into account interchain interactions to explain how 3D spin-nematic and SDW long-range ordered phases are induced with lowering temperature. A mean-field theory for the 3D nematic phase of quasi-1D spin- $\frac{1}{2}$ magnets [9] has been proposed recently, but it cannot be applied to the SDW phase and does not quantitatively describe finite-temperature effects. It is obscure how both nematic and SDW ordered phases are described in a unified way.

FIG. 1 (color online). Spatially anisotropic spin model consisting of weakly coupled spin- $\frac{1}{2}$ J_1 - J_2 chains. We introduce interchain couplings J_{y_1,y_2,y_3} in the x-y plane. Similarly, J_{z_1,z_2,z_3} are present in the x-z plane.

A reliable theory for 3D orderings in weakly coupled spin- $\frac{1}{2}J_1$ - J_2 chains is strongly called for.

In this Letter, we develop a general theory for spinnematic and incommensurate SDW orders in spatially anisotropic 3D magnets consisting of weakly coupled J_1 - J_2 spin chains with arbitrary interchain couplings in a wide magnetic-field range. Combining field theoretical and numerical results for the J_1 - J_2 spin chain, we obtain finite-temperature phase diagrams, which contain both spinnematic and SDW phases at sufficiently low temperatures. We thereby reveal characteristic features in the ordering of weakly coupled J_1 - J_2 chains, which cannot be predicted from the theory for the single J_1 - J_2 chain. We also discuss the relevance of our results to real compounds such as LiCuVO₄.

Model.—Our model of a spatially anisotropic magnet is depicted in Fig. 1. The corresponding Hamiltonian is expressed as

$$\mathcal{H}_{3D} = \sum_{r} \mathcal{H}_{r} + \mathcal{H}_{int}, \qquad (2)$$

where $\mathbf{r} = (r_y, r_z)$ denotes the site index of the square lattice in the y-z plane, \mathcal{H}_r denotes the Hamiltonian (1) for the \mathbf{r} th J_1 - J_2 chain along the x axis in a magnetic field

H, and \mathcal{H}_{int} is the interchain interaction. In \mathcal{H}_{int} , we introduce weak interchain Heisenberg-type exchange interactions with coupling constants J_{y_i} and J_{z_i} (i=1,2,3) defined in the x-y and x-z planes, respectively [22].

 $Spin-\frac{1}{2}$ J_1-J_2 chain.—Under the condition $|J_{y_i,z_i}| \ll |J_{1,2}|$, it is reasonable to choose decoupled J_1-J_2 spin chains (\mathcal{H}_r) as the starting point for analyzing the 3D model (\mathcal{H}_{3D}) . The low-energy effective Hamiltonian for the nematic TL-liquid phase is given by

$$\mathcal{H}_{\text{eff}}^{r} = \int dx \sum_{\nu=\pm} \frac{v_{\nu}}{2} \left[K_{\nu} (\partial_{x} \theta_{\nu}^{r})^{2} + K_{\nu}^{-1} (\partial_{x} \phi_{\nu}^{r})^{2} \right] + G_{-} \sin(\pi M) \sin(\sqrt{4\pi} \phi_{-}^{r} + \pi M), \tag{3}$$

where $x=a_0j$ (the length a_0 of the J_1 bond is set equal to unity), $(\phi_\pm^r(x), \theta_\pm^r(x))$ is the canonical pair of scalar boson fields, and v_\pm and K_\pm are, respectively, the excitation velocity and the TL-liquid parameter of the (ϕ_\pm, θ_\pm) sector. The sine term makes ϕ_- pinned, inducing an excitation gap in the (ϕ_-, θ_-) sector. Physically, the gap corresponds to the magnon binding energy E_b . On the other hand, the (ϕ_+, θ_+) sector describes a massless TL liquid. Vertex operators are renormalized as $\langle e^{i\alpha\sqrt{\pi}\phi_+(x)}e^{-i\alpha\sqrt{\pi}\phi_+(0)}\rangle_+ = |2/x|^{\alpha^2K_+/2}$ for $|x|\gg 1$, in which $\langle \cdots \rangle_\pm$ denotes the average over the (ϕ_\pm, θ_\pm) sector. Spin operators $S_{i,r}$ are also bosonized as

$$S_{j,r}^{z} \approx M + \partial_{x} [\phi_{+}^{r} + (-1)^{j} \phi_{-}^{r}] / \sqrt{\pi} + (-1)^{q} A_{1}$$

$$\times \cos\{\sqrt{\pi} [\phi_{+}^{r} + (-1)^{j} \phi_{-}^{r}] + 2\pi M q\} + \cdots, \qquad (4a)$$

$$S_{j,r}^{+} \approx e^{i\sqrt{\pi} [\theta_{+}^{r} + (-1)^{j} \theta_{-}^{r}]} [(-1)^{q} B_{0} + B_{1}$$

$$\times \cos\{\sqrt{\pi} [\phi_{+}^{r} + (-1)^{j} \phi_{-}^{r}] + 2\pi M q\} + \cdots], \qquad (4b)$$

where $M = \langle S_{j,r}^z \rangle$, $q = \frac{j}{2}(\frac{j-1}{2})$ for even (odd) j, and A_n and B_n are nonuniversal constants. Utilizing Eqs. (3) and (4), we can evaluate spin and nematic correlation functions at zero temperature (T = 0) as follows [3,5,6]:

$$\langle S_j^+ S_0^- \rangle \approx B_0^2 \cos(\pi j/2) (2/|j|)^{1/(2K_+)} g_-(x) + \cdots,$$
 (5a)

$$\langle S_j^z S_0^z \rangle \approx M^2 + (A_1^2/2) |\langle e^{i\sqrt{\pi}\phi_-} \rangle_-|^2 \cos[\pi j(M-1/2)] (2/|j|)^{K_+/2} + \cdots,$$
 (5b)

$$\langle S_i^+ S_{i+1}^+ S_0^- S_1^- \rangle \approx (-1)^j C_0 |j|^{-2/K_+} + \cdots,$$
 (5c)

where $g_-(x) = \langle e^{\pm i\sqrt{\pi}\theta_-(x)}e^{\mp i\sqrt{\pi}\theta_-(0)}\rangle_-$, C_0 is a constant, and we have omitted the index r. The function $g_-(x)$ decays exponentially as $x^{-1/2}e^{-x/\xi_-}$. The parameter K_+ , which is less than 2 in the low magnetization regime, monotonically increases with M [3] and $K_+ \rightarrow 4$ at the saturation. Thus, the spin-nematic (SN) correlation is stronger than the incommensurate SDW correlation in the high-field regime with $K_+ > 2$ and weaker in the low-field regime with $K_+ < 2$.

The correlation length ξ_{-} is related to v_{-} via $v_{-} = \xi_{-}E_{b}$ under the assumption that the low-energy theory for

the (ϕ_-, θ_-) sector has Lorentz invariance. The velocity v_+ has the relation $v_+ = 2K_+/(\pi\chi)$, where $\chi = \partial M/\partial H$ is the uniform susceptibility. Since K_+ , ξ_- , E_b , and χ are all determined with reasonable accuracy by using the density-matrix renormalization group method [3,23], v_\pm can be quantitatively evaluated as depicted in Fig. 2. The figure shows that v_- is always larger than v_+ , in accordance with the perturbative formulas $v_\pm \approx v[1 \pm KJ_1/(\pi v) + \cdots]$ for $|J_1| \ll J_2$, in which v_- and v_- are, respectively, the spinon velocity and the TL-liquid

parameter for the single AF- J_2 chain. We also note that v_+ approaches zero at $M \to \frac{1}{2}$.

Analysis of the 3D model.—Let us now analyze the 3D model (2) starting with the effective theory of the J_1 - J_2 chain. We first bosonize all of the interchain couplings in \mathcal{H}_{int} through Eq. (4). To obtain the low-energy effective theory for Eq. (2), we trace out the massive (ϕ_-^r, θ_-^r) sectors in the Euclidean action $\mathcal{S}_{tot} = \mathcal{S}_0 + \mathcal{S}_{int}$ via the cumulant expansion $\mathcal{S}_{eff}^{3D} = \mathcal{S}_0 + \langle \mathcal{S}_{int} \rangle_- - \frac{1}{2} (\langle \mathcal{S}_{int}^2 \rangle_- - \langle \mathcal{S}_{int} \rangle_-^2) + \cdots$,

where \mathcal{S}_0 and \mathcal{S}_{int} are, respectively, the action for the TL-liquid part of the (ϕ_+^r, θ_+^r) sectors and that for the interchain couplings. This corresponds to the series expansion in $J_{y_i,z_i}/v_-$. The resultant effective Hamiltonian is expressed as $\mathcal{H}_{\text{eff}}^{3D} = \mathcal{H}_0 + \mathcal{H}_{\text{SDW}} + \mathcal{H}_{\text{SN}} + \cdots$. Here, $\mathcal{H}_0 = \sum_r \int dx \frac{v_+}{2} [K_+(\partial_x \theta_+^r)^2 + K_+^{-1}(\partial_x \phi_+^r)^2]$ is the TL-liquid part and \mathcal{H}_{SDW} and \mathcal{H}_{SN} are, respectively, obtained from the first- and second-order cumulants as follows:

$$\mathcal{H}_{\text{SDW}} = G_{\text{SDW}} \int \frac{dx}{2} \sum_{r} \sum_{\alpha = y, z \atop (r' - r + e_{\alpha})} \{ J_{\alpha 1} \cos \left[\sqrt{\pi} (\phi_{+}^{r} - \phi_{+}^{r'}) \right] - J_{\alpha 2} \sin \left[\sqrt{\pi} (\phi_{+}^{r} - \phi_{+}^{r'}) - \pi M \right] + J_{\alpha 3} \sin \left[\sqrt{\pi} (\phi_{+}^{r} - \phi_{+}^{r'}) + \pi M \right] \},$$
(6a)

$$\mathcal{H}_{SN} = G_{SN} \int \frac{dx}{2} \sum_{r} \sum_{\alpha = y, z \atop (r' = r + e_{\alpha})} \left[J_{\alpha 1}^2 - (J_{\alpha 2} - J_{\alpha 3})^2 \right] \cos \left[\sqrt{4\pi} (\theta_+^r - \theta_+^{r'}) \right], \tag{6b}$$

with coupling constants $G_{\rm SDW}=A_1^2|\langle e^{i\sqrt{\pi}\phi_-}\rangle_-|^2$ [24] and $G_{\rm SN}=-\frac{B_0^4}{4v_-}\int dx v_-d\tau g_-(x,\tau)^2$ (τ is imaginary time). The summations run over all nearest-neighbor pairs of chains, where ${\bf r}'={\bf r}+{\bf e}_\alpha$ ($\alpha=y,z$), ${\bf e}_\alpha$ denotes the unit vector along the α axis, and we have assumed that the field ϕ_+ smoothly varies in x. The first-order term ${\cal H}_{\rm SDW}$ contains an interchain interaction between the operators $e^{\pm i\sqrt{\pi}\phi_+'}$, which essentially induces a 3D spin longitudinal order. Similarly, the term ${\cal H}_{\rm SN}$ contains an interchain interaction between the spin-nematic operators $S_{j,r}^\pm S_{j+1,r}^\pm \sim (-1)^j e^{\pm i\sqrt{4\pi}\theta_+'}$, which enhances a 3D spin-nematic correlation. We should notice that the effective theory ${\cal H}_{\rm eff}^{\rm 3D}$ is reliable under the condition that temperature T is sufficiently smaller than the binding energy E_b and the velocities v_+ .

Both the couplings $G_{\rm SDW,SN}$ can be numerically evaluated from the density-matrix renormalization group data of correlation functions [3,23]: $G_{\rm SDW}$ corresponds to the

FIG. 2 (color online). (a),(c) Magnon binding energy E_b and (b),(d) excitation velocities v_{\pm} as a function of M in the spin-nematic TL-liquid phase in the spin- $\frac{1}{2}J_1$ - J_2 chain at T=0.

amplitude of the leading term of the longitudinal correlator $\langle S_j^z S_0^z \rangle$ given in Eq. (5) and $G_{\rm SN}$ can be evaluated as $G_{\rm SN} \approx \pi v_-^{-1} \sum_{j=1}^L (j/2)^{1/K_+} j \langle S_j^+ S_0^- \rangle^2$. We have checked that the finite-size correction to the sum is small enough when the cutoff L is larger than ξ_- . We emphasize that there is no free parameter in $\mathcal{H}_{\rm eff}^{\rm 3D}$.

To obtain the finite-temperature phase diagram, we apply the interchain mean-field (ICMF) approximation [25,26] to the effective Hamiltonian $\mathcal{H}^{\rm 3D}_{\rm eff}$. To this end, we introduce the "effective" SDW operator $\mathcal{O}_{\rm SDW}=e^{i\pi(1/2-M)j}e^{i\sqrt{\pi}\phi_+^r}$ and the spin-nematic operator $\mathcal{O}_{\rm SN}=(-1)^je^{i\sqrt{4\pi}\theta_+^r}$. Within the ICMF approach, the finite-temperature dynamical susceptibilities of \mathcal{O}_A ($A={\rm SDW}$ or SN) above 3D ordering temperatures are calculated as

$$\chi_A(k_x, \mathbf{k}, \boldsymbol{\omega}) = \frac{\chi_A^{\text{1D}}(k_x, \boldsymbol{\omega})}{1 + J_{\text{eff}}^A(\mathbf{k})\chi_A^{\text{1D}}(k_x, \boldsymbol{\omega})},\tag{7}$$

where $\mathbf{k} = (k_y, k_z)$ is the wave vector in the y-z plane, $\boldsymbol{\omega}$ is the frequency, and the effective coupling constants J_{eff}^A are given by

$$J_{\text{eff}}^{\text{SDW}}(\mathbf{k}) = G_{\text{SDW}} \sum_{\alpha = y, z} [J_{\alpha_1} \cos k_{\alpha} - J_{\alpha_2} \sin (k_{\alpha} - \pi M)]$$

$$+ J_{\alpha_3} \sin(k_\alpha + \pi M)], \tag{8a}$$

$$J_{\text{eff}}^{\text{SN}}(\mathbf{k}) = G_{\text{SN}} \sum_{\alpha = y, z} [J_{\alpha_1}^2 - (J_{\alpha_2} - J_{\alpha_3})^2] \cos k_{\alpha}.$$
 (8b)

The 1D susceptibilities $\chi_A^{1D}(k_x,\omega)=\frac{1}{2}\sum_j e^{-ik_x j}\times\int_0^\beta d\tau e^{i\omega_n\tau}\langle\mathcal{O}_A(j,\tau)\mathcal{O}_A^\dagger(0,0)\rangle|_{i\omega_n\to\omega+i\epsilon}$ are analytically computed by using the field theoretical technique $(\beta=1/T \text{ and }\epsilon\to+0)$ [27]. Those for SDW and spin-nematic operators respectively take the maximum at $k_x^{\max}=(\frac{1}{2}-M)\pi$ and π ; $\chi_{\mathrm{SDW}}^{1D}(k_x^{\max},0)=\frac{2}{v_+}(\frac{4\pi}{\beta v_+})^{K_+/2-2}\times\sin(\frac{\pi K_+}{4})B(\frac{K_+}{8},1-\frac{K_+}{4})^2$ and $\chi_{\mathrm{SN}}^{1D}(\pi,0)=\frac{2}{v_+}(\frac{4\pi}{\beta v_+})^{2/K_+-2}\times\sin(\frac{\pi}{K_+})B(\frac{1}{2K_+},1-\frac{1}{K_+})^2$, where B(x,y) is the beta function.

The transition temperature of each order is obtained from the divergent point of its susceptibility at $\omega \to 0$, which is given by

$$1 + \operatorname{Min}_{k}[J_{\text{eff}}^{A}(k)]\chi_{A}^{1D}(k_{x}^{\max}, 0) = 0.$$
 (9)

The 3D ordered phase with the highest transition temperature is realized. From this ICMF scheme, we can determine the phase diagram for \mathcal{H}_{3D} with an arbitrary combination of J_{y_i,z_i} . This is a significant advantage compared with previous theories for spin-nematic phases. We note that, when $J_{\rm eff}^A$ approaches zero, the present framework becomes less reliable and we need to consider the subleading terms in $\mathcal{H}_{\rm eff}^{3D}$.

From Eqs. (8) and (9), we find that the ordering wave numbers $k_{y,z}$ tend to be a commensurate value $k_{y,z}=0$ or π (see also Ref. [24]). Thus, the SDW ordered phase has the wave vector $k_x=(\frac{1}{2}-M)\pi$ and $k_{y,z}=0$ or π . This agrees with the experimental result in the intermediate-field phase of LiCuVO₄ [13,14]. For the spin-nematic ordered phase, we find the commensurate ordering vector $(k_x,k_{y(z)})=(\pi,0)$ for $|J_{y_1(z_1)}|>|J_{y_2(z_2)}-J_{y_3(z_3)}|$ and $(k_x,k_{y(z)})=(\pi,\pi)$ for $|J_{y_1(z_1)}|<|J_{y_2(z_2)}-J_{y_3(z_3)}|$. This commensurate nature of $k_{x,y,z}$ in the nematic phase is consistent with Ref. [9].

We show typical examples of obtained phase diagrams in Fig. 3. When interchain couplings are not frustrated, as the J_{y_1,z_1} dominant cases of Figs. 3(a) and 3(b), the SDW ordered phase is largely enhanced and the nematic ordered phase is reduced to a higher-field regime compared to the crossover line $(K_+ = 2)$ in the J_1 - J_2 chain. This is because the effective couplings $J_{\rm eff}^{\rm SDW}$ and $J_{\rm eff}^{\rm SN}$ are respectively generated from the first- and second-order cumulants, and therefore $J_{
m eff}^{
m SDW}$ is generally larger than $J_{
m eff}^{
m SN}$ in nonfrustrated systems with weak interchain couplings. When both the couplings J_{y_2,y_3} are dominant, we find a similar tendency. We note that a model with dominant J_{y_2,y_2} has been proposed for LiCuVO₄ [11], where a new phase expected to be a 3D nematic phase has been observed only near the saturation [12]. From the calculations for the cases of $|J_1|/J_2 = 0.5$, 1.0, and 2.0, we find that the nematic phase region in the M-T phase diagram generally becomes smaller with increase in $|J_1|/J_2$ since the value $g_{-}(x)$ in $G_{\rm SN}$ decreases. When there is a certain frustration in interchain couplings, however, the nematic phase region can expand, as shown in Fig. 3(c). When the signs of J_{y_1} and $J_{y_2}(J_{y_3})$ are opposite, $J_{\text{eff}}^{\text{SDW}}$ becomes small and the 3D nematic phase expands down to a relatively lower-field regime. We emphasize that our theory succeeds in quantitatively analyzing the competition between SDW and nematic ordered phases in quasi-1D magnets.

Effects of a four-spin term.—Finally, we study the effects of an interchain four-spin interaction. The Hamiltonian we consider is

$$\mathcal{H}_4 = -J_4 \sum_{j,\langle \mathbf{r}, \mathbf{r}' \rangle} S_{j,\mathbf{r}}^+ S_{j+1,\mathbf{r}}^+ S_{j,\mathbf{r}'}^- S_{j+1,\mathbf{r}'}^- + \text{H.c.}$$
 (10)

FIG. 3 (color online). Phase diagrams of the weakly coupled J_1 - J_2 chains (2) in the M-T plane, which are derived from the ICMF approach. The temperatures $T_{\rm SDW(SN)}$ denote the 3D SDW (nematic) transition points. The vertical dashed lines denote the crossover lines between nematic dominant and SDW dominant TL liquids in the 1D J_1 - J_2 chain.

This interaction is a part of the spin-phonon coupling $\mathcal{H}_{\rm sp} = -J_{\rm sp} \sum_{j,\langle r,r'\rangle} (S_{j,r} \cdot S_{j,r'}) (S_{j+1,r} \cdot S_{j+1,r'})$ and therefore it really exists in some compounds. One easily finds that Eq. (10) enhances the spin-nematic ordering. Applying the field theoretical strategy to the system $\mathcal{H}_{\rm 3D} + \mathcal{H}_{\rm 4}$, we find that $J_{\rm eff}^{\rm SN}$ is replaced with $J_{\rm eff}^{\rm SN} - 4J_4C_0(\cos k_y + \cos k_z)$. We thus obtain the phase diagram for $\mathcal{H}_{\rm 3D} + \mathcal{H}_{\rm 4}$, as shown in Fig. 4. Comparing Figs. 3(a) and 4, we see that an interchain four-spin interaction definitely enhances the 3D nematic phase even if its coupling constant J_4 is small. Since J_4 is usually positive, it favors ferrotype nematic ordering along the y and z axes; i.e., $k_{y,z} = 0$.

Conclusion.—We have constructed finite-temperature phase diagrams for 3D spatially anisotropic magnets, which consist of weakly coupled spin- $\frac{1}{2}$ J_1 - J_2 chains in an applied magnetic field. Incommensurate SDW and spinnematic ordered phases appear at sufficiently low temperatures, triggered by the nematic TL-liquid properties in the J_1 - J_2 spin chains. We reveal several natures of orderings in the coupled J_1 - J_2 chains: The 3D nematic ordered phase is generally smaller than the 1D nematic dominant region,

FIG. 4 (color online). Phase diagram of the weakly coupled J_1 - J_2 spin chains (2) with a four-spin interaction \mathcal{H}_4 .

while it can be larger if we somewhat tune the interchain couplings. The ordering wave numbers $k_{y,z}$ tend to be 0 or π , and a small four-spin interaction \mathcal{H}_4 efficiently helps the 3D nematic ordering. We finally note that our theory can also be applied to AF- J_1 systems.

We thank Akira Furusaki for fruitful discussions at the early stage of this study. This work was supported by KAKENHI No. 21740295, No. 22014016, and No. 23540397 from MEXT, Japan.

- [1] N. Shannon, T. Momoi, and P. Sindzingre, Phys. Rev. Lett. 96, 027213 (2006).
- [2] T. Vekua, A. Honecker, H.-J. Mikeska, and F. Heidrich-Meisner, Phys. Rev. B 76, 174420 (2007).
- [3] T. Hikihara, L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B 78, 144404 (2008).
- [4] J. Sudan, A. Luscher, and A. M. Läuchli, Phys. Rev. B 80, 140402(R) (2009).
- [5] M. Sato, T. Momoi, and A. Furusaki, Phys. Rev. B 79, 060406(R) (2009).
- [6] M. Sato, T. Hikihara, and T. Momoi, Phys. Rev. B 83, 064405 (2011).
- [7] See, for example, K. Penc and A.M. Läuchli, in *Introduction to Frustrated Magnetism*, edited by C. Lacroix, P. Mendels, and F. Mila (Springer-Verlag, Berlin, 2011), p. 331.
- [8] R. Shindou and T. Momoi, Phys. Rev. B **80**, 064410 (2009).
- [9] M. E. Zhitomirsky and H. Tsunetsugu, Europhys. Lett. 92, 37001 (2010).
- [10] S. Nishimoto, S.-L. Drechsler, R. O. Kuzian, J. van den Brink, J. Richter, W. E. A. Lorenz, Y. Skourski, R. Klingeler, and B. Büchner, Phys. Rev. Lett. 107, 097201 (2011).

- [11] M. Enderle, C. Mukherjee, B. Fåk, R. K. Kremer, J.-M. Broto, H. Rosner, S.-L. Drechsler, J. Richter, J. Malek, A. Prokofiev, W. Assmus, S. Pujol, J.-L. Raggazzoni, H. Rakoto, M. Rheinstädter, and H. M. Rønnow, Europhys. Lett. 70, 237 (2005).
- [12] L.E. Svistov, T. Fujita, H. Yamaguchi, S. Kimura, K. Omura, A. Prokofiev, A.I. Smirnov, Z. Honda, and M. Hagiwara, J. Exp. Theor. Phys. Lett. 93, 24 (2011).
- [13] T. Masuda, M. Hagihara, Y. Kondoh, K. Kaneko, and N. Metoki, J. Phys. Soc. Jpn. 80, 113705 (2011).
- [14] M. Mourigal, M. Enderle, B. Fåk, R.K. Kremer, J.M. Law, A. Schneidewind, A. Hiess, and A. Prokofiev, Phys. Rev. Lett. 109, 027203 (2012).
- [15] N. Büttgen, P. Kuhns, A. Prokofiev, A.P. Reyes, and L.E. Svistov, Phys. Rev. B 85, 214421 (2012).
- [16] K. Nawa, K. Yoshimura, M. Yoshida, and M. Takigawa (private communication).
- [17] M. Hase, H. Kuroe, K. Ozawa, O. Suzuki, H. Kitazawa, G. Kido, and T. Sekine, Phys. Rev. B 70, 104426 (2004).
- [18] Y. Yasui, M. Sato, and I. Terasaki, J. Phys. Soc. Jpn. 80, 033707 (2011).
- [19] A. U. B. Wolter, F. Lipps, M. Schäpers, S.-L. Drechsler, S. Nishimoto, R. Vogel, V. Kataev, B. Büchner, H. Rosner, M. Schmitt, M. Uhlarz, Y. Skourski, J. Wosnitza, S. Süllow, and K. C. Rule, Phys. Rev. B 85, 014407 (2012).
- [20] S. E. Dutton, M. Kumar, M. Mourigal, Z. G. Soos, J.-J. Wen, C. L. Broholm, N. H. Andersen, Q. Huang, M. Zbiri, R. Toft-Petersen, and R. J. Cava, Phys. Rev. Lett. 108, 187206 (2012).
- [21] T. Masuda, A. Zheludev, B. Roessli, A. Bush, M. Markina, and A. Vasiliev, Phys. Rev. B 72, 014405 (2005).
- [22] One can easily take account of other different interchain couplings using our theoretical framework.
- [23] T. Hikihara and A. Furusaki, Phys. Rev. B 69, 064427 (2004).
- [24] Correctly speaking, $G_{\rm SDW}$ can take both positive and negative values $\pm A_1^2 |\langle e^{i\sqrt{\pi}\phi_-}\rangle_-|^2$ due to degenerate pinning positions $\sqrt{4\pi}\phi_- + \pi M = (2n + \frac{1}{2})\pi$ (n: integer) in each J_1 - J_2 chain. This ambiguity is lifted by subleading interchain terms omitted in $\mathcal{H}_{\rm eff}^{\rm 3D}$. We note that the 3D SDW ordering temperature does not depend on the sign of $G_{\rm SDW}$ in the weak-coupling regime $|J_{v_0z_i}| \ll |J_{1,2}|$.
- [25] D.J. Scalapino, Y. Imry, and P. Pincus, Phys. Rev. B 11, 2042 (1975).
- [26] M. Bocquet, F.H.L. Essler, A.M. Tsvelik, and A.O. Gogolin, Phys. Rev. B 64, 094425 (2001).
- [27] See, for example, T. Giamarchi, *Quantum Physics in One Dimension* (Oxford University Press, New York, 2004).