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Ever since the experiments which founded the field of highly frustrated magnetism, the kagome
Heisenberg antiferromagnet has been the archetypical setting for the study of fluctuation induced exotic
ordering. To this day the nature of its classical low-temperature state has remained a mystery: the
nonlinear nature of the fluctuations around the exponentially numerous harmonically degenerate ground
states has not permitted a controlled theory, while its complex energy landscape has precluded numerical
simulations at low temperature, 7. Here we present an efficient Monte Carlo algorithm which removes the
latter obstacle. Our simulations detect a low-temperature regime in which correlations asymptote to a
remarkably small value as 7 — 0. Feeding these results into an effective model and analyzing the results
in the framework of an appropriate field theory implies the presence of long-range dipolar spin order with

a tripled unit cell.
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The first experiments on the ‘“kagome bilayer”
SCGO [1,2] triggered a wave of interest in kagome
antiferromagnets in particular, and frustrated systems in
general. A cluster of early seminal theoretical papers [3-7]
established kagome magnets as model systems for novel
ordering phenomena, discussing in particular spin liquid-
ity, partial order, disorder-free glassiness and order by
disorder. The excitement persists, not least in the quantum
realm [8], where there has been much recent progress in
understanding the ground state for § = 1/2 [9].

Remarkably, for the classical kagome Heisenberg
magnet, the nature of low-temperature phase has not been
established, despite the deceptive simplicity of its
Hamiltonian, encoding only nearest-neighbour interactions
of strength J >0 between classical unit-length spins
S;: H=JY3Si*S;. This happens because classical
Heisenberg spins do not lend themselves at all to the num-
erical methods applied to S=1/2 (e.g., Refs. [9-11]), while
classical Monte Carlo simulations (e.g., Refs. [3,5,12,13])
have not been able to sample the different local free energy
minima separated by entropic barriers—for the best effort
yet, see Ref. [14]. At the same time, analytical approaches
have managed to develop different possible scenarios,
described below, without being able to choose between
them [3,15].

Here, we present a Monte Carlo algorithm which ena-
bles us to simulate systems containing over 2000 spins
down to a low-temperature regime, where we find that
correlations no longer change as 7T is lowered further. We
use the results to determine the best parameters in effective
models, a stiffness in a height model, an effective field
theory, as well as a further-neighbor coupling in an
extended Potts model. In particular the latter can then be
simulated for over 10° spins, which enables us to verify the
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critical behavior encapsulated by the height model. Thus
we identify which ordering scenario applies: we obtain
spin ordering with a remarkably small ordered moment,
which we estimate to be about an order of magnitude below
fully developed order. In the remainder of this Letter,
we give an account of our analysis, starting with a review
of the unusual behavior of the kagome magnet as the
temperature is lowered.

Complex energy landscape.—As the kagome magnet
is cooled from high temperatures, it develops short-range
order like any other magnet. Upon cooling further, its
frustrated nature asserts itself: at the Curie temperature,
J, there is no sign of any ordering predicted by mean-field
theory, despite the fact that the spins in each triangle firmly
point at 120° to one another. Instead, it is not until much
lower T =< 1073 J that all spins adopt a common plane.

This coplanar ordering is described mathematically by
two order parameters [14]: a quadrupolar (also known as
nematic or coplanar) one for the direction normal to the
plane; and an octupolar one as follows. If one denotes the
angle the spins make in the plane with respect to a refer-
ence spin by 6, it is exp(3i#) which orders. Crucially, the
existence of dipolar (spin) order, in exp(if), remains an
open question.

It should be noted that since the kagome lattice is two
dimensional, di-, quadru- and octupolar orders in fact only
set in algebraically, being cut off on a length scale &, for
T > 0, below which scale our analysis applies. Crucially,
however, &), diverges exponentially as the temperature is
lowered, so that the ordered regimes are still well defined
in practise even at small but nonzero 7.

As the ground state is continuously degenerate, the
energy landscape has many zero-energy directions
(flat valleys). However, at nonzero temperature, in the
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free energy landscape—which incorporates entropic
effects—the flat valleys are replaced by robust local min-
ima at each coplanar state (see Fig. 1). The coplanar states
are discrete, and can be mapped onto the ground states of
the antiferromagnetic Potts model on the kagome lattice
(which is in turn equivalent to the three-coloring model
of the honeycomb lattice): each spin points in one of three
directions at mutual angles of 120° with one another.
Labelling these with the colors red, green and blue, the
coplanar states are those where each triangle hosts a spin of
each color. Below, we will use the fact that these discrete
models are exactly soluble [16]; e.g., it is known that there
are exponentially many coplanar states, N, ~ 1.13", where
N is the total number of spins.

Unusually, the origin of the coplanar ordering is
entropic—coplanar states have particularly soft fluctua-
tions around them: linear spin-wave analysis finds an iden-
tical spectrum for all of them, including an entire band
of zero-energy excitations [5]. It is thus only when
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FIG. 1 (color online). Top: Candidate phases of the kagome
antiferromagnet (from left to right: ¢ = 0; Kosterlitz-Thouless
phase; ¢ = +/3 X /3) in the phase diagram of an extended Potts
model as defined in the text. J, = 0 corresponds to the pure Potts
model on the kagome lattice, the unweighted ensemble of copla-
nar Heisenberg ground states. Bottom: Cartoon of the effective
entropy landscape for ground states—soft fluctuations yield min-
ima at coplanar states. Our algorithm surmounts the entropic free
energy barriers, exploring many coplanar states. The resulting
ensemble average leads to a small but nonzero spin order. Inset:
Transitions between harmonically equivalent configurations—
spins on loops of alternating color are rotated such that the angle
a spin makes with its local Potts axis is not changed as the dark
green and blue spins are exchanged for the light ones.

anharmonic fluctuations are taken into account that the
different coplanar states acquire different free energies.
No algorithm has so far managed to probe these free energy
differences, due to the impossibility of surmounting the
entropic barriers between coplanar ground states suffi-
ciently efficiently. Here we present an algorithm which
achieves this as follows.

Numerical algorithm.—At low temperature, fluctuations
around an ideal coplanar (Potts) state are small. We can
thus identify a Potts configuration nearest to the state of the
system. We then rotate spins on an alternating loop of spins
of two colors so that these two colors are interchanged.
Crucially, we have found a way of mapping configurations
into each other which are equivalent as far as the linearised
equations of motion are concerned—whether or not to
accept a move thus depends only on precisely the anhar-
monic terms responsible for the low-temperature state
selection. Our algorithm implements the semiclassical
dynamical symmetry identified in Ref. [17].

First, we construct the Potts configuration by assigning
color R to all spins with a positive projection onto a
randomly chosen initial spin. Then, the other spins along
the resulting loops are alternatingly colored G-B. Next, for
each loop, we evaluate the average orientations Y, of spins
colored @ = R, G, or B. Finally, we attempt a move con-
sisting of rotating spins G(B) by the angle ¥(Yp, Y¢) in
opposite directions in the nematic plane of the loop; this
move is accepted by a standard Metropolis condition.
To see how the dynamical symmetry is implemented, we
write a spin S, ; =Y, + s,;, so that the total spin of a
triangle i, €; = > .S, = >, Yo + X454 At the lowest
temperatures, >, Y, = 0 (the ground state condition), and
the rotation operation RzxYr = Yi, RzYz = Y and
ReYo =Yy as L(Yp Ys) =2, Now, Risg, +
Rpsp; + Rgsgi = (€7, €], —€3). The linear equations of
motion are invariant under this change [17]. We can thus
fully equilibrate systems with, depending on boundary
conditions, up to 2025 spins at temperatures down to
T = 1075 J. Lower temperatures are achievable but, as
we discuss next, this is not necessary. In all the data we
show here, we have imposed a stringent condition for
equilibration, namely that memory of the starting configu-
ration be lost, even for initialization in maximally topo-
logically distinct sectors—¢q = 0 and g = \/§ X \/§ [18].

Correlations at low temperature.—There is a limiting
low-temperature regime where the correlations cease to
change as T is lowered further below 7 ~ 1073 J. This is
shown in Fig. 2 for spin correlations in real space for a
system of N = 2025 spins with open boundary conditions.
This implies that the effective weights differentiating
between different coplanar states become temperature in-
dependent, as follows. The fluctuations selecting an
ordered state are subdominant compared to those which
select the nematic order: the modes which cost no energy
are dressed by the finite-energy ones when anharmonic
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FIG. 2 (color online). Spin correlation functions C(r) =
(S(r) - S(0)) along the nearest-neighbor directions at various
temperatures. Also shown for comparison is the case of Potts
model. The simulations were done on a lattice with N =~ 9 X 152
spins with open boundary conditions. Inset: The correlations
acquire a stable low-temperature value below T = 1073 J.

effects are taken into account. To lowest order, cubic
(quartic) terms appear to second (first) order in the corre-
sponding perturbation theory. The corresponding contri-
butions are suppressed by a factor of 7 compared to the
leading ones [15]. Temperature therefore drops out of the
resulting effective weights. The low-temperature limit is
therefore smooth. Our numerics establishes that this holds
for the full problem, and not just to leading order in a
perturbation theory which may or may not converge on
account of the large number of zero modes. We will use
this property extensively below.

Enhanced correlations at low T.—In Fig. 3, we present
the correlators necessary for the demonstration of order
in this regime of low temperatures. We focus on the
order parameter corresponding to a tripling of the unit
cell, m g, corresponding to the right state depicted in the
phase diagram Fig. 1. Shown for comparison are the cor-
relations of the (unweighted) average over the coplanar
Potts states, which do not take into account the anharmonic
fluctuations responsible for the low-temperature regime
under consideration. The m s deviates upwards from the
decay of the Potts correlations, while the decay of m,,
corresponding to the left state in Fig. 1, is even faster
than at higher temperatures (not shown). Next, we analyse
this data in detail with the aid of effective field theories and
an effective Hamiltonian.

Height model analysis.—Historically, the question about
the nature of the ordering has sometimes been phrased
as an alternative between ordering in either ¢ = O or in a
\/§ X \/§ structure as these are frequent outcomes of per-
turbations to the classical Heisenberg model. However, the
actual distinction has to be made between a power-law
correlated state and an ordered state far away from the
q = 0 state, as suggested by the phase diagram in Fig. 1.
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FIG. 3 (color online). (a) Spin correlations of the Heisenberg
model at 7 = 107> and the extended Potts model with J, =
0.019 on a lattice with 396 spins. (b) Order parameter m 5 as a
function of linear system size L for different values of J,. The
solid red points for small systems are from the Heisenberg
simulations. Inset: Scaling collapse of data for L = 60.

This was noted long ago by Huse and Rutenberg [3], based
on Baxter’s observation that the Potts model, i.e., the
average over coplanar states without entropic weighting,
is at a critical point in the limit of T — 0 [16]. To settle the
question whether the kagome magnet is in turn ordered,
one therefore needs to establish whether the appropriate
tuning parameter—the stiffness of a so-called height field
[18]—increases rather than decreasing or remaining the
same: for decreasing stiffness, the system would move
away from the critical point into the Kosterlitz-Thouless
phase, whereas for an increase, ordering ensues.

Given our algorithm can access the low-temperature
correlations, we readily find that the stiffness has
increased. This is evident already in the real-space
correlations, which are significantly enhanced for the
Heisenberg model over the Potts model (Fig. 2). More
directly the stiffness can be extracted by considering
long-wavelength fluctuations of the height field h(r)
defined at each hexagon of the lattice. The height differ-
ence between two neighboring hexagons (labelled by 7, J)
is h; — h; = Y/, where IJ denotes the site shared by the
two hexagons [18]. The ratio of the stiffnesses is given by

1imq—>0®(q2) = <|hPotts(Q)|2>/<|hHeisenberg(Q)|2>, as shown
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FIG. 4 (color online). (a) The function O(q) = {|hpy(¢)?)/
(IMyeisenbere(9)]?) denotes the ratio of the averaged height fields.
A ratio ®(g) > 1 for ¢g*> — 0 reflects the increased stiffness of
the Heisenberg model compared to the Potts model, and the
resultant ordering at low temperature. (b) Relative frequency of
the averaged height vector for Heisenberg spins at 7 = 1074 J
for a lattice with 729 spins and open boundary conditions. The
maxima correspond to \/5 X \/§ order.

in Fig. 4(a). This quantity is clearly bigger than one, and
does not appear to reach a limiting value, signaling not
only enhanced correlations but indeed the onset of
ordering. The nature of the ordering is indicated by the
histogram of the height vector, which is a periodic variable
and hence best plotted over its height-space unit cell.
This is what’s shown in Fig. 4(b) [18]. The maximum
(minimum) at the cell corner (centre) point corresponds
to the ¢ = /3 X /3 (¢ = 0) state, respectively, and the
difference between these extrema is greatly enhanced over
the unweighted Potts model (not shown).

This establishes that the Heisenberg antiferromagnet is
more ordered than the Potts model which describes the
intermediate, coplanar, temperature regime: the magnet
finds itself on the ordered side of the transition.

Effective Hamiltonian.—The weakness of the resulting
order turns out to be a blessing in disguise: it allows us to
use an effective low-temperature Hamiltonian for the
Heisenberg magnet which is only a small perturbation of
the antiferromagnetic Potts model. This is demonstrated in

Fig. 3(a), where we find quantitative agreement for the spin
correlations at all distances between Heisenberg and an
extended Potts model obtained by merely adding a weak,
J>, = 0.019, second-neighbour ferromagnetic coupling.
This interaction is normalized such that (un)equal Potts
spins (lose) gain an ‘“‘entropy”’ J,; i.e., the concomitant
Boltzmann factors are of the temperature-independent
form exp(*J,), as explained above. Of course, there may
be small additional terms which we cannot accurately fit to
the data of the present simulations but the agreement
between the correlations from the two models is remark-
able given the simplicity of the fit, and we believe this is a
basis for a good semiquantitative approximation scheme.

With this in hand, we can now simulate the effective
Potts model to get a better handle on very large system
sizes. Figure 3(b) displays the size of the m s for different
values of J, for systems of up to over N = 10° sites. While
m_ 5 does not decay to an asymptotic constant for even
those large systems, it never approaches a limiting alge-
braic behavior either and instead always bends upwards.
Even though ordering is not directly detectable in an
unambiguous fashion, we can use information from
the exact solution, which leads us to expect a transition
at J, = 0. Assuming a scaling form, F, appropriate for a
Kosterlitz-Thouless transition [19],

m L3 = F(£()/L),

we obtain data collapse for m Net Fig. 3(b), where & =

exp(alJ,| 73/5) is the correlation length and a =~ 0.385 is
the only fitting parameter. In the thermodynamic limit,
m 5~ AE 3. Estimating the constant A from large
|/>], where m_5 can be directly read off, we obtain a small
but nonzero ordered moment about an order of magnitude
below the full moment.

Conclusions and outlook.—We have analyzed the
asymptotic low-temperature regime of the classical
kagome Heisenberg antiferromagnet with a combination
of analytical and numerical approaches. We find dipolar
spin order with a tripled unit cell and a very small ordered
moment. It will be interesting to see how this ordering
disappears as the temperature is raised. More broadly, it is
desirable to study the effective model in considerably more
detail as a function of J,, in particular with view to the
question of whether there are any additional transitions,
e.g., involving the chirality [20], the other marginal opera-
tor of the critical Potts model [16]. Additional interesting
models to examine would be the ordering of analogous
magnets on the pyrochlore lattice [21], for some work on
this see Ref. [22], or the fate of the hyperkagome magnet in
the limit of the lowest temperatures [14].

Overall, this kagome magnet provides a most striking
instance of a classical system with nonlinear-fluctuation—
induced order very much smaller than the maximal
possible moment, which is rather unusual for classical
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systems. These tend to be characterized by robust order,
such as the saturated ground state order of the frustrated
triangular lattice Heisenberg antiferromagnet. Like in the
case of the kagome § = 1/2 quantum magnet, our classical
phase is also extremely fragile, destabilized already by
additional interactions of strength of only a few percent
of the leading one.

We are grateful to Claudio Castelnovo, John Chalker,
Chris Henley, David Huse, Jesper Jacobsen, Jane Kondeyv,
Andreas Léuchli, Shivaji Sondhi, Mathieu Taillefumier,
and Mike Zhitomirsky for useful discussions.

Note added.—As we were concluding this Letter,
Ref. [23] appeared, which also considers the low-
temperature behavior of the classical kagome Heisenberg
magnet. Their main interest is the dynamics but they do
also present an algorithm accessing the low-temperature
regime.
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