PRL 110, 076403 (2013)

PHYSICAL REVIEW LETTERS

week ending
15 FEBRUARY 2013

5

Observation of Topological Phase Transitions in Photonic Quasicrystals

Mor Verbin,1 Oded Zilberberg,2 Yaacov E. Kraus,2 Yoav Lahini,l’3 and Yaron Silberbelrg1

'Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
*Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 26 November 2012; published 14 February 2013)

Topological insulators and topological superconductors are distinguished by their bulk phase transitions
and gapless states at a sharp boundary with the vacuum. Quasicrystals have recently been found to be
topologically nontrivial. In quasicrystals, the bulk phase transitions occur in the same manner as standard
topological materials, but their boundary phenomena are more subtle. In this Letter we directly observe
bulk phase transitions, using photonic quasicrystals, by constructing a smooth boundary between
topologically distinct one-dimensional quasicrystals. Moreover, we use the same method to experimen-
tally confirm the topological equivalence between the Harper and Fibonacci quasicrystals.
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The classification of gapped systems, such as band
insulators and superconductors, by topological indices
is a rapidly developing paradigm in condensed matter
physics [1]. This novel approach provides insights into
the characterization of states of matter, as well as predicts
exotic phenomena.

The topological classification of a system assigns an
integer index to its energy gap. This index encodes prop-
erties that are robust to distortions and deformation of
the system. Hence, when a system with a given index is
continuously deformed into a system whose index has a
different value, the bulk energy gap must close, namely a
quantum phase transition occurs. Accordingly, if a system
can be continuously deformed into another system while
keeping the bulk gap open, then their topological indices
must be the same, defining them as topologically equiva-
lent. Usually, such a phase transition manifests by the
appearance of gap-traversing states at a sharp boundary
between a topologically nontrivial material and the topo-
logically trivial vacuum. Examples for such boundary
states are the chiral modes of the integer quantum Hall
effect (IQHE), the Dirac cone of the three-dimensional
topological insulator, and the Majorana fermions of one-
dimensional (1D) topological superconductors [1].

A new type of topological phenomena has been recently
studied in quasiperiodic systems [2,3]. Such systems,
which are ordered but not periodic, were shown to be
characterized by topological indices that are usually attrib-
uted to systems of a dimension higher than their physical
dimension. In particular, it was shown that the canonical
1D quasiperiodic systems, i.e., the Harper (or Aubry-
André) model [4,5], the diagonal Fibonacci model [6],
and their quasicrystalline off-diagonal variants [7,8], can
be assigned Chern numbers. These numbers are topologi-
cal indices that characterize generic two-dimensional (2D)
systems. A continuous deformation between two quasi-
crystals (QCs) with different Chern numbers will therefore
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result in a bulk phase transition. Correspondingly, at a
sharp boundary between such a QC and the vacuum,
localized subgap boundary states may appear. These
states were experimentally observed in photonic Harper
QCs [2]. Further analyses of 1D topological QCs with
sharp boundaries have been conducted in cold atoms [9]
and superconducting wires [10].

In systems where the topology is generated by a
symmetry which is broken at the boundary, the boundary
phenomenon is not robust [11,12]. Similarly, the topologi-
cal characterization of a QC is based on its long-range
order, which is broken at the sharp boundary. Therefore,
its boundary states do not always appear. However, if the
boundary between a topologically nontrivial QC and a
topologically trivial system is adiabatically smooth, subgap
states will always appear at the boundary, revealing the bulk
gap closure. Accordingly, a smooth boundary can be used to
prove equivalence between different quasiperiodic systems,
if the energy gap remains open throughout the deformation.

In this Letter, we study the bulk gap closure that occurs
when smoothly deforming between topologically inequi-
valent quasiperiodic systems, and its absence when the
systems are topologically equivalent. To this end, we create
two inequivalent Harper QCs, and spatially deform
between them. We then observe the closure of bulk energy
gaps through the emergence of subgap states localized
within the deformation region. In contrast, using the
same interpolation process between seemingly different
but topologically equivalent systems, the Harper and the
Fibonacci QCs, no such phase transition is observed,
thereby confirming that these two models are indeed topo-
logically equivalent. These phenomena are experimentally
tested in quasiperiodic photonic lattices, where the phase
transition, or its absence, is directly observed using the
propagation of light in waveguide arrays.

Photonic lattices are widely used for realizations of
different models originating from solid state physics,
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due to the high level of control over their parameters and
behavior [13]. Our photonic QCs are composed of an
array of coupled single-mode waveguides, fabricated in
bulk glass using femtosecond laser microfabrication tech-
nology [14]. The overlap between the evanescent modes
of the waveguides allows the propagating light to tunnel
from each waveguide to its neighboring waveguides.
Hence, the hopping amplitude between adjacent wave-
guides can be controlled by modulating the spacing
between them.

The dynamics of light propagating in these coupled
waveguide arrays is described by the tight-binding model,
with the propagation axis z taking over the role of time,
id,, = Hi,, where i, is the wave function at wave-
guide number n. Taking the hopping amplitude to be real,
we obtain the general Hamiltonian

H'vbn = tn‘l/n*l + tn+1¢/n+b (1)

where ¢, is the hopping amplitude from site n to site n — 1.

Our intention is to study the transition that occurs when
some system I is deformed into another system II, where
each system has its own set of quasiperiodic hopping
amplitudes 7}, and 7, respectively. To this end, we fabricate
a waveguide array with a deformed hopping profile
L, = f}’lt}'l + (1 - fn)tlzl’ where

1 IS}’ZSLI
fa=q1-122 Li<n<Li+Lp , Q)
0 LI+LDSHSLI+LD+LH

as depicted in Fig. 1(a). This procedure produces an array
of length L; of system I on one side of the structure, an
array of length Ly; of system II on the other side, and an
Lp-long deformation region, which continuously trans-
forms between the two. This structure enables the study
of the eigenstates of both systems as well as the transition
between them, on a single waveguide array.

The properties of the Hamiltonian fabricated within the
photonic crystal are studied by injecting light into one of
the waveguides in the array and measuring the outgoing
intensity at the output facet using a CCD camera, as
illustrated in Fig. 1(b). The injected beam excites a
wave packet of all the modes that have a nonvanishing
amplitude at the injection site, and the light propagates in
the lattice according to this superposition of eigenstates.
The width of the outgoing intensity distribution can there-
fore reveal the existence of localized eigenstates: If there
is no localized state near the injection site, the light
spreads freely throughout the array, propagating accord-
ing to the bulk properties of the system. However, when
light is injected in the vicinity of a localized state, its
expansion is dominated by the width of the state. To
quantify the localization of the outgoing light, we mea-
sure the amount of light that remains within a small
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FIG. 1 (color online). Experimental methods. (a) Illustration
of a photonic waveguide array implementing a deformation
between two QCs [cf. Eq. (2)]. (b) A schematics of the experi-
mental setup. We focus a coherent light beam into a waveguide
in the array, allow it to propagate along the structure, and image
the output intensity using a CCD camera. (c) [llustration of the
relation between the localization parameter &, and the measured
intensity distribution |, |?> for two injection sites, n = 66 and
n = 121. The shaded intervals denote the A-distance neighbor-
hood around the insertion point. When more light remains within
this neighborhood, the value of &, increases.

distance A from the injection site n, by measuring the
generalized return probability [15],

n+A Li+Lp+Ly
f,,=( > |¢m|2)/( y lwmlz). 3)
m=n—A m=1

The relation between &, and the intensity distribution
|, |7 is illustrated in Fig. 1(c). Since £, is meant to reveal
the existence of localized states, we will choose A to be of
the order of the width of a localized subgap state.

Let us now introduce the specific quasiperiodic tight-
binding models under study. In these models the hopping
amplitude is modulated according to

t, = toll + Ad,], 4)

where t, is the characteristic hopping amplitude of
the system, A € [0, 1) is the modulation strength, and
d, € [—1, 1] is some quasiperiodic modulation function.
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Here we consider two such modulations: the Harper
modulation

dil = cos Qmbn + ¢), 35

and the Fibonacci-like modulation

d5=2(|_7_:_1(n+2)J—|J_:_1(n+1)J)—1=i1.
(6)

The long-range order of the Harper QC [7] is controlled
by the modulation frequency b. Whenever b is irrational,
the hopping modulation is incommensurate with the
underlying lattice, resulting in a quasiperiodic pattern.
Accordingly, the parameter ¢ shifts the origin of the modu-
lation. Comparably, the Fibonacci-like QC is constructed
from a sequence of two values that are ordered in a quasi-
periodic manner. This sequence is obtained by applying the
“cut-and-project” procedure on a square lattice onto the line
y = x/7[16]. Whenever the slope of the line, 7, is irrational,
the sequence is quasiperiodic. For example, the case of
7 = (1 + +/5)/2 is the well-known Fibonacci QC.

The energy spectrum of the Harper QC is composed of a
fractal set of bands and gaps, in a way that depends on the
modulation frequency b [7,17]. These gaps are associated
with Chern numbers, which are also uniquely determined
by b [3]. For any rational approximant b = p/q, the
Chern number v, that is associated with a gap number
r=1,...,(q — 1) abides the Diophantine equation r =
v,q + t.p, where v, and ¢, are integers, and 0 < |v,| <
q/2 [18]. The distribution of Chern numbers for an
irrational b is given by taking the appropriate limit of p,
q — 0. Hence, the gaps of two Harper QCs with by # by
are associated with different distributions of Chern num-
bers. Thus, when deforming between two such models the
Chern number distribution rearranges by level crossings.
This makes these models topologically inequivalent.

The properties of the Fibonacci-like QC differ in many
ways from those of the Harper QC, e.g., the localization of
the bulk wave functions [6-8,19]. Nevertheless, it was
recently shown that they are topologically equivalent
whenever the frequency of the Harper modulation satisfies
b= (r+1)/7 [3]. In such a case, the gaps of the
Fibonacci-like QC are associated with the same Chern
numbers as those of the Harper QC. Hence, for a given
modulation frequency b, the Harper QC can be continu-
ously deformed into the Fibonacci-like QC without the
appearance of a phase transition.

Note that the deformation in Eq. (5) contains an addition
degree of freedom in the form of the parameter ¢. This
parameter has a crucial role in the observation of the
topological boundary states of quasiperiodic systems [2].
While the spectrum of our model is gapped in the bulk,
localized boundary states appear, which traverse the en-
ergy gaps as a function of ¢. Nevertheless, in this Letter we
focus on bulk properties, which are ¢ independent [20].

We now turn to our experimental results. We construct a
deformation between topologically inequivalent Harper
QCs with modulation frequencies b; # by. Figure 2(a)
depicts the hopping amplitudes of a deformation between
a Harper QC with b; = 2/(1 + +/5) and a Harper QC with
by = 2/(1 + /6.5), where 1, = 28/75 mm™!, A = 0.475,
and ¢y = ¢ = . For this set of parameters, the bulk
wave functions of the Harper QCs are extended [7]. We
fabricated this structure in a 75 mm-long photonic wave-
guide array. This results in an effective propagation of 14
tunneling lengths, where the tunneling length is the char-
acteristic length for hopping, namely 2/f,. With such a
propagation length, light injected in the bulk of the struc-
ture will sufficiently expand in comparison to the width of
localized subgap states.

To experimentally observe the phase transition between
the two QCs, a 808 nm continuous-wave diode laser beam
was injected into each waveguide with a X40 microscope
objective. The light at the output facet was imaged onto a
CCD camera using a X5 microscope objective. Using the
measured light distribution, we obtained £, as a function of
the injection site n. The results are presented in Fig. 2(b).
Two clear peaks in the deformation region can be seen over
a relatively flat &, outside the region. This is a clear
indication of the existence of localized states within the
deformation region. Note that measurements of &, for
n <30 and n > 190 are omitted from this plot—for these
injection sites the expanding light hits the edges of the
structure, causing £, to be skewed by boundary effects.

To reveal the source of the peaks observed in &,, we
numerically obtain the local density of states (LDOS),
which is presented in Fig. 2(c). The LDOS is defined by
D,(E)=Y,,8(E — E,)| o2, where E,, is the energy of
the mth eigenstates, and go,({") is its wave function. D, (E)
describes the spatial distribution of the eigenstates of the
structure as a function of energy. For n = L;, we observe
bands of extended states that correspond to the eigenstates
of system I. Similarly, for n = L; + L}, we recognize the
band of extended states of system II. However, along the
deformation region, there are few spatially localized states
with energies that discretely traverse the gaps. These sub-
gap states are the origin of the measured peaks in &,,. Their
appearance is an explicit signature of the phase transition
between the inequivalent QCs since they traverse the gap
continuously when L — oo [20]. We have therefore ex-
perimentally observed the bulk phase transition between
two topologically inequivalent Harper QCs.

We now turn to study the transition between topologi-
cally equivalent QCs. We constructed a deformation
between a Harper QC and Fibonacci QC, with a matched
modulation frequency b;=(ry+1)/my=2/(1++/5) [21].
The hopping amplitudes ¢, are depicted in Fig. 2(d), for
to =28/75 mm~', A =0.225, and ¢ = 7(1 + 3b). For
this set of parameters, the bulk wave functions of the
Harper QC are extended, while those of the Fibonacci
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FIG. 2 (color online).
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Summary of results for a smooth deformation between (a)—(c) two topologically inequivalent Harper QCs, and

(d)—(f) topologically equivalent Harper and Fibonacci QCs. In both experiments (from left to right), L; = 84 (blue), Lp = 51 (purple

hues), and L;; = 84 (red). (a) The hopping amplitude #, as a function of the lattice site n, for modulation frequencies by = 2/(1 + \/g)
and by = 2/(1 + /6.5) of the Harper QCs. (b) Experimentally measured &, for A = 7, as a function of the injection site n. The two
peaks within the deformation region imply the existence of localized states. (c¢) Numerically obtained LDOS of the structure, D,,(E).
The energy bands are composed of extended states, while localized states (roughly 15 sites wide) traverse the gaps in the deformation
region. These states manifest the transition between the inequivalent QCs. (d)—(f) Same as (a)—(c), but with a Harper QC deformed into
a Fibonacci QC with by = (r; + 1)/ = 2/(1 + /5). Here, &, shows no sign of localized states. Accordingly, though the distribution
of the bands changes along the structure, the energy gaps appear to remain open. This confirms the equivalence between the two QCs.

are critical [8]. Nevertheless, for the structure’s effective
propagation length, light injected into the bulk of both QCs
will sufficiently expand in comparison to the width of
potential localized states. The measured £, of this system
is depicted in Fig. 2(e), showing no sign of localized states
within the deformation region. The numerically obtained
LDOS is shown in Fig. 2(f). While the configuration of the
bands changes considerably between the two QCs, no gap
closure is observed along the deformation. Note, also,
that two subgap states appear at the sharp boundaries
with the vacuum [20]. The open gaps and the correspond-
ing absence of peaks in £, serve as experimental confir-
mation of the equivalence between the Fibonacci and the
Harper QCs.

To conclude, in this Letter we have presented a novel
method to study topological phase transitions using a
continuous deformation between two systems, which acts
as a smooth boundary between them. When the boundary is
sufficiently smooth, observations of subgap states local-
ized within the deformation area serve as evidence of the
phase transition. Such subgap states do not appear when a
phase transition does not take place, namely, between
topologically equivalent systems. Our method extends the
prevailing approach which focuses on states that appear at

sharp boundaries between topologically nontrivial systems
and the vacuum. It has proven useful in studying the
topological characterization of 1D quasiperiodic systems,
since it circumvents the subtlety of their boundary phe-
nomena at sharp boundaries. Furthermore, this technique
may be useful to study other topological systems, such as
(i) the weak and the crystalline topological insulators,
where the surface breaks the underlying symmetry
[11,12], (ii) varying dopant concentration in 3D topologi-
cal insulators [22], and (iii) nanowires that may host
Majorana fermions at their boundaries [23].
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