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Recent theory has indicated how to emulate tunable models of quantum magnetism with ultracold polar

molecules. Here we show that present molecule optical lattice experiments can accomplish three crucial

goals for quantum emulation, despite currently being well below unit filling and not quantum degenerate.

The first is to verify and benchmark the models proposed to describe these systems. The second is to

prepare correlated and possibly useful states in well-understood regimes. The third is to explore many-

body physics inaccessible to existing theoretical techniques. Our proposal relies on a nonequilibrium

protocol that can be viewed either as Ramsey spectroscopy or an interaction quench. The proposal uses

only routine experimental tools available in any ultracold molecule experiment. To obtain a global

understanding of the behavior, we treat short times pertubatively, develop analytic techniques to treat the

Ising interaction limit, and apply a time-dependent density matrix renormalization group to disordered

systems with long range interactions.
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Introduction.—Excitement about the recent achievement
of near-degenerate ultracold polar molecules [1–5] in opti-
cal lattices [6] stems from their strong dipolar interactions
and rich internal structure, including rotational, vibra-
tional, and hyperfine states. These features may be applied
to tests of fundamental constants [7], quantum information
[8], ultracold chemistry [9], and quantum emulation of
condensed matter models [10–12]. In this Letter our focus
is on molecules as emulators of quantum magnetism
[13–25], specifically as proposed in Refs. [26,27].
Models of quantum magnetism have some of the simplest
many-body Hamiltonians, yet describe numerous materials
[28–30] and display condensed matter phases ranging from
fundamental to exotic: antiferromagnets, valence bond
solids, symmetry protected topological phases, and spin
liquids. Emulating quantum magnetism with molecules is
appealing because, like cold atoms, the systems are clean
and the microscopics well understood. Advantages over
cold atom emulations of quantum magnetism [31] include
orders of magnitude larger energy scales and more tunable
Hamiltonians [26,27]. These prior studies have focused on
spin ground states of unit filling insulators. In contrast, we
propose a simple dynamic procedure applicable to present
experiments (Fig. 1, elaborated later), which are ultracold,
but nondegenerate and low density. We show that interest-
ing many-body quantum magnetism can be studied
immediately.

Specifically we show how experiments may use this
dynamics to achieve major goals for emulating quantum
magnetism, and we outline these goals to motivate our
calculations. First, although interesting models of quantum
magnetism are predicted to describe ultracold molecules
under appropriate circumstances, this has yet to be experi-
mentally demonstrated. The proposed dynamic protocol
allows such a demonstration as well as benchmarking of

the emulator’s accuracy. Second, one wishes to prepare
interesting correlated—and possibly useful—states. This
protocol can generate such states in well-understood
regimes. Finally, one wants to explore behavior in these
models in regimes inaccessible to present theoretical tools.
This is the generic case for the proposed dynamics. We
emphasize that all of these goals are achievable under
existing experimental conditions [6], despite present
experiments being non—quantum degenerate and at low
density. Furthermore, they require only routinely used
measurement and preparation tools [32].
Background.—References [26,27] show how molecule

rotational states can serve as effective spins, and that
dipolar interactions provide an effective spin-spin interac-
tion. In the simplest case, one populates two rotational
levels in a dc electric field E [33] and works in a deep
lattice to allow no tunneling. In this limit, a spin-1=2
dipolar quantum XXZ model describes the molecules as
follows [34]:

FIG. 1 (color online). Dynamic protocol viewed as Ramsey
spectroscopy, two microwave pulses of area � and �0 separated
by time t. Inset: alternative view as an interaction quench, a
t ¼ 0 sudden turn-off of an infinite strength field h� along �.
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The sum runs over all molecules, Szi and xS�i are the
spin-1=2 operators satisfying ½Szi ; S�i � ¼ �S�i , and
Vddði; jÞ ¼ ð1� 3cos2�ijÞ=jri � rjj3 with ri the ith mole-

cule’s position in lattice units and�ij the angle between E

and ri � rj. For simplicity and concreteness we assume a

dimension d � 2 system with E perpendicular to it, so
Vddði; jÞ ¼ 1=jri � rjj3, but our ideas apply in arbitrary

geometries. One may tune J?=Jz by changing E and the
choice of rotational state. We denote by j0i, j1i, and j2i the
three lowest energy rotational eigenstates in the applied E
field with zero angular momentum along the quantization
axis. Choosing j0i and j1i to make the spin-1=2, one can
tune1> J?=Jz > 0:35 using (readily achievable)E fields
from 0 to 16 kV=cm. Choosing j0i and j2i for the spin-1=2,
one can tune 0< J?=Jz < 0:1 for similarE fields. Figure 2
shows the couplings’ E-field dependence for these rota-
tional level choices in both natural units (dp ¼ permanent

dipole moment and B ¼ rotational constant) and real units
for KRb in a 532 nm lattice. A characteristic scale for these
couplings is 400 Hz in KRb and 40 kHz in LiCs [35],
compared to & 10 Hz in cold atoms using superexchange
[36] (we set @ ¼ 1). KRb molecules recently have been
loaded in a deep three-dimensional lattice with 25 s
lifetimes [6], allowing dynamics lasting thousands of J�1?
and J�1z .

One important aspect of the ongoing experiments is that
the filling f is much less than one molecule per site. The
JILA experiments estimate f� 0:1 [37]. As a result,
although molecules’ positions are static through one shot,
they fluctuate from shot to shot. Thus, rather than forming a
regular lattice, spins’ locations have significant disorder.

We use a simple disorder model that likely describes
current experiments. We assume that each site is occupied
with a probability p that is independent of other sites [38].

If the molecules are fermions (e.g., KRb [6]) then for
current temperatures, which occupy only the lowest
band, no sites can be doubly occupied and p ¼ f. This
also applies to bosons with a strong on-site density-density
interaction (e.g., RbCs [39]). The trap causes f to vary
spatially. Although we show results only for the homoge-
neous system, we have taken the trap into account and
found that our conclusions remain valid [40]. Remarkably,
relatives of such unusual models exist, and are employed to
understand materials, 3He-4He mixtures, and disorder-
induced phenomena [41–49].
Disorder is related to temperature, but one must distin-

guish motional temperature from spin temperature. Only
through disorder does motional temperature enter, because
the deep lattice freezes out the motion. Even if motional
temperature is large it is entirely captured by the disorder.
Experimental microwave manipulation can produce essen-
tially zero entropy nonthermal spin states. While one could
worry that disorder washes out the behavior, we will show
that strong correlations, entanglement, and interesting
many-body physics survive large amounts of disorder.
Dynamic protocol.—Our dynamic procedure may be

alternatively viewed as Ramsey spectroscopy or an inter-
action quench (Fig. 1). Reference [50] studied closely
related Rabi spectroscopy. In Ramsey spectroscopy, a
well-established tool in atomic physics, one begins with
all molecules in the rotational ground state and applies two
strong, resonant microwave pulses separated by time t. The
first pulse initializes the spin states along �, specifically to

cosð�=2Þei’=2j #i þ sinð�=2Þe�i’=2j "i, for an angle � set
by the pulse area, with high fidelity (>99%). We take
’ ¼ 0 with no loss of generality. The second pulse rotates
a desired spin component, chosen by the pulse area and
phase, to the z axis. In this way one can measure any
desired collective spin component hn̂ � Si, where n̂ is a
unit vector and S� ¼ P

iS
�
i with � 2 fx; y; zg. One can

also obtain higher moment correlations, e.g., hðn̂ � SÞ2i,
from the measurement record. Between these pulses the
spins evolve for a time t under the Hamiltonian in Eq. (1).
We note that molecule experiments have recently begun
using this protocol [32] and Ref. [51] applied it to long-
range Ising models in recent Penning trap experiments with
�300 ions.
If one imagines adding a transverse field hS � n̂� to

Eq. (1)’s Hamiltonian, with n̂� a unit vector pointing �
from the �z axis (see Fig. 1), the Ramsey protocol corre-
sponds to a quench from h ¼ 1 to h ¼ 0. One may there-
fore be able to explore, e.g., Kibble-Zurek physics [52,53].
Theoretical methods.—We calculate dynamics in four

limits: (1) short times, fJ?; Jzgt� 1, (2) Ising, J? ¼ 0,
(3) near-Heisenberg [SU(2)], jJz � J?j � Jz, and (4) one
dimension for arbitrary J?=Jz. We develop analytic tools
in arbitrary dimension for limits (1)–(3) and study (4) with
the numerically exact adaptive time-dependent density
matrix renormalization group (t-DMRG) [54–57]. All are
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FIG. 2 (color online). Left: dc electric field dependence of
coupling constants J? (blue) and Jz (purple) for fj0i; j1ig (solid)
and fj0i; j2ig (dashed) rotational level choices to represent the
spin-1=2. Top to bottom, at E ¼ 0, these are J1?, J

1
z , J

2
z , J

2
? where

superscript 1 and 2 denote the first and second choice of states,
respectively. Units for KRb are in a 532 nm lattice. Right:
rescaled short time coefficient A=f2, defined by hSxi ðtÞi¼
hSxi ð0Þi�A�2þOðt4Þ, for a one-dimensional dipolar chain, for
fillings f¼0;0:2; . . . ;1:0, bottom to top, with � � ðJz � J?Þt.
Results are from Eqs. (2).
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obtained by time evolving under Eq. (1)’s H, correspond-
ing to the middle leg of the Ramsey spectroscopy. We will
present calculational details elsewhere [40]. In all cases
hSzji ¼ �ðf=2Þ cos� is conserved.

Short time limit, fJ?; Jzgt� 1.—For short times,

hOðtÞi ¼ hOi � ith½O; H�i � t2

2 h½½O; H�; H�i þOðt3Þ for

an observable O. We calculate the commutators and time
dependence of hS�ðtÞi to leading nonzero order, and
hS�ðtÞS�ðtÞi to linear order. We find

hSxi i ¼
f

2
sin�

�
1� f�2

8
½�2 þ f�cos2��

�
þOð�4Þ;

hSyi i ¼ �ðf2��1=8Þ sinð2�Þ þOð�3Þ;
(2)

where � ¼ ðJz � J?Þt, �m ¼
P

j�0V
m
ddði; iþ jÞ, and � ¼

�2
1 ��2. Note that for these homogeneous systems, these

observables are independent of i. Similarly, defining C��ij �
hS�i S�j i, we find

Cxyij ¼
�f3 sinð2�Þsin�

16
½Vddði;jÞ��1�þOð�2Þ

Cyzij ¼
�f3

8

�
sinð2�Þcos�

2
�1þVddði;jÞsin3�

�
þOð�2Þ

(3)

for i � j. To linear order, C��ij and Cxzij are constant. For

i ¼ j, the Pauli algebra reduces hS�i S�i i to hS�i i. One can
compute �m rapidly for arbitrary lattices and analytically
in special cases (e.g., one dimension).

Ising limit, J? ¼ 0.—We extend the Emch-Radin solu-
tion [58–62] for Ising dynamics to arbitrary �, interspin
coupling strengths, correlations, and to include disorder
[63]. We find

hSxi ðtÞi ¼ f
sinð�Þ
2

Re

�Y
j�i

X
�j

gð�jÞeð1=2ÞitJzVddði;iþjÞ�j

�
; (4)

where the sum runs over � ¼ 0 (unoccupied site)
and � ¼ �1 (Sz ¼ �1=2), and gð�Þ ¼ ð1� fÞ��;0 þ
fsin2ð�=2Þ��;1 þ fcos2ð�=2Þ��;�1. The expectation hSyi i
takes the imaginary (rather than real) part of the square-
bracketed expression in Eq. (4). Similarly one can obtain
correlations [40]. The product in Eq. (4) is readily eval-
uated numerically by truncating the interaction range, even
for a truncation including thousands of sites. In special
limits hSxi i simplifies: e.g., for � ¼ �=2 and f ¼ 1,
hSxi ðtÞi ¼ ð1=2Þ

Q
j�i cosðJzVddði; jÞt=2Þ.

Near-Heisenberg limit, Jz 	 J?.—Here a finite size gap
� / J?=N2 for N particles to excitations out of the Dicke
(fully symmetric) manifold prevents states initially in the
manifold from leaving it when jJz � J?j � � [64,65].
The effective Hamiltonian obtained from projecting H to
the Dicke manifold is the collective spin-N=2 model

[64,65] Heff ¼ �ðSzÞ2 with � ¼ J?�Jz
NðN�1Þ

P
i�jVddði; iþ jÞ:

Dynamics are straightforwardly calculated for any disorder

configuration, because there are only N þ 1 states in the
Dicke manifold; for example hSxi i ¼ sin�

2 Re½ðcosð��Þ �
i cos� sinð��ÞÞN�1�. Again hSyi i is the corresponding
imaginary part. Unlike the other approximations, this is
valid only for finite N.
One dimension.—We use adaptive t-DMRG [54–57] to

calculate dynamics of one-dimensional chains. We treat 20
site chains and find finite size effects to be fairly small. We
discretize time in steps of 0:05J�1z , and find a discarded
weight of & 10�9 for times & 10J�1z , adaptively keeping
m ¼ 50–500 reduced density matrix states. Altogether, we
expect errors dominated by the disorder average, which is
taken over 100 random configurations.
Results: global perspective.—Figure 3 overviews dy-

namics, from the calculations above, as a function of
J?=Jz, f, and �. Experimentally, these are controlled by
electric field [26,27], temperature or density, and first
Ramsey pulse area, respectively. Figure 3 presents dimen-
sion d ¼ 1 results, but our analytic expressions show that
the d ¼ 1 results are representative of d > 1. Dynamics in
d > 1 has more neighbors and thus is faster. Figure 3 shows
that the short time expansion describes the dynamics to a
time at which hSxðtÞi changes from hSxðt ¼ 0Þi by more
than the disorder fluctuations (shaded regions), enabling
experiments to measure the short time dynamics signal
above the disorder noise.
Next, consider f ¼ 1 and � ¼ �=2. For J?=Jz ¼ 0, hSxi i

oscillates with period 2�=Jz from the nearest neighbor
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FIG. 3 (color online). Phase diagram illustrating crossovers of
dynamics versus filling f, J?=Jz, and � using t-DMRG on
chains. In each region, a plot shows dynamics for � ¼ 0:1�,
0:5� (top blue, bottom purple), labeled with a qualitative de-
scription. Shaded regions for f ¼ 0:2 indicate one standard
deviation from disorder averaging 100 configurations. The par-
tial curves at short times are obtained from our perturbative
expansions, Eqs. (2). The label ‘‘KRb: 14 ms’’ indicates the time
for KRb in a 5 kV=cm dc E field, using j0i and j1i as the
spin-1=2 (see Fig. 2). Dynamics in higher dimensions is faster
due to the presence of more neighbors.
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interaction, superposed with slower oscillations from lon-
ger range interactions. The first-few-neighbor interactions
account for the dynamics to times t� 10J�1z . For J? ¼ 0
the frequencies form a discrete set. Increasing J? gives a
continuum of frequencies, damping the oscillations.
Approaching J? ¼ Jz, the dynamics slows down, since
at J? ¼ Jz the initial state is an eigenstate of the
Hamiltonian. As J?=Jz increases further, the dynamics is
damped with characteristic time scale ðJ? � JzÞ�1.

For f� 1, the behavior crosses over to that of indepen-
dent clusters, eventually with only two particles. The larg-
est frequency is roughly half that for f ¼ 1, because there
is a single neighbor instead of two. Thus, the dynamics
remains roughly as fast as for f ¼ 1, but the dynamics’
magnitude at times �fJ�1z ; J�1? g is smaller because there

are fewer molecules and only a fraction of them are close
enough to interact. At any f the overall time scales are
roughly independent of �, but for small � or to linear order
in time, the Bloch vector undergoes roughly mean-field
precession, while for � 	 �=2 or longer times, it depolar-
izes (shrinks).

Achieving goals of emulating quantum magnetism.—For
experimental verification of the emulation of the XXZ
model and benchmarking of its accuracy, we consider short
time dynamics. Figure (2) (right) shows their characteristic
dependence on �, f, and fJz; J?g. Figure (2) (left) shows Jz
and J?’s dependence on the dc electric field for two rota-
tional state choices.

To achieve the second goal of generating interesting
well-understood states, we note that for f 	 1 and

� ¼ �=2 and Jz 	 J?, the state at t ¼ �=ð2�Þ is jGHZi¼
ð1= ffiffiffi

2
p Þðh ��� jþei	j!���!iÞ for some 	 [64–67].

This is a cat state, specifically a Greenberger-Horne-
Zeilinger (GHZ) state, useful for metrology [68]. Ising
dynamics offer other interesting states. For nearest neigh-
bor interactions and � ¼ �=2, the state at t ¼ �=ð2JzÞ is a
cluster state, which suffices for universal measurement
based quantum computing [69].

Figure 4 (bottom) quantifies how one notion of the
utility of these quantum states—their ability to perform
quantum-enhanced metrology—extends to f < 1. While
the precision of measuring frequencies with uncorrelated
spins is limited to the standard quantum limit, scaling as

1=
ffiffiffiffi
N
p

, entangled spins with squeezing can scale as 1=N.
The squeezing parameter 
 quantifies this improvement,

given by 
 � min	

ffiffiffi
N
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðS�n̂	Þ2i�hS�n̂	i2
p

hSxi minimizing over

unit vectors n̂	 in the y-z plane. For � ¼ �=2, Fig. 4

(bottom) plots decibels squeezing, dB squeezing ¼
�10log10
, for 100 independent tubes with L ¼ 20. It
shows that substantial squeezing (dB squeezing> 0)
occurs for a broad range of J?=Jz and t, even if f < 1. In
fact, it appears squeezing generically persists for all f.

A generic implementation of the proposed dynamics in
d > 1 achieves the third goal, emulating quantum magne-
tism in theoretically intractable regimes. Away from the

short time, Ising, and Heisenberg limits, no solution is
known in d > 1. As Fig. 4 shows, in d ¼ 1 strong correla-
tions develop. For f ¼ 1 these are even larger at large
distance than in the ground state. Interestingly, the dynam-
ics shows a light-cone-like spreading to an apparent steady
state. We note recent work on many-body localization in
quenches of disordered XXZ chains [70].
Experimental outlook.—Though our discussion focused

on molecules, we point out that the dynamics studied here
can have direct application in other physical systems,
including condensed matter [48], trapped ions [51,71],
and optical lattice clocks [72,73].
We close by noting technical details for molecule

experiments. Rotational states’ polarizabilities differ
[26,74], so the optical trap induces a spatially varying fieldP

ihiS
z
i . In addition, Eq. (1) ignores density-density ninj

and density-spin niS
z
j interactions [26,27]. For f < 1, the

latter gives a spatially varying magnetic field that depends
on molecules’ random positions. Spin-echo pulses com-
mon in Ramsey experiments remove both effects.
Summary.—We have shown that Ramsey spectroscopy

enables ongoing ultracold polar molecule experiments to
accomplish three goals for emulating quantum magnetism:
(1) benchmarking the emulation’s accuracy (using short
time dynamics), (2) generating strongly correlated
and entangled states in well-understood limits (Ising,
near-Heisenberg, one dimension), and (3) exploring
strongly correlated dynamics in regimes inaccessible to
theory (generic case in dimensions d > 1).
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FIG. 4 (color online). Correlation and squeezing dynamics.
Top: hSxjSxjþii � hSxj ihSxjþii (averaged over j) for J? ¼ 2Jz
with � ¼ �=2 as a function of time for f ¼ 0:4 (left) and
f ¼ 1 (right), compared to the ground state (upper right bar).
Other f, �, and J? are similar. Bottom: squeezing in decibels as
a function of time, quantifying quantum-enhanced metrological
utility, for J? ¼ 2Jz, f ¼ 1; J? ¼ 0, f ¼ 1; J? ¼ 2Jz, f ¼ 0:4;
and J? ¼ 0, f ¼ 0:4 (top to bottom) and � ¼ �=2.
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Finally, we mention that in addition to the XXZ
Hamiltonian explored in this Letter, our dynamic protocol
should be useful for verifying emulation of more compli-
cated spin models that may be realized with ultracold
molecules, as in Refs. [25–27] and beyond.
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