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Holography grew out of black hole thermodynamics, which relies on the causal structure and general

covariance of general relativity. In Einstein-æther theory, a generally covariant theory with a dynamical

timelike unit vector, every solution breaks local Lorentz invariance, thereby grossly modifying the causal

structure of gravity. However, there are still absolute causal boundaries, called ‘‘universal horizons,’’

which are not Killing horizons yet obey a first law of black hole mechanics and must have an entropy if

they do not violate a generalized second law. We couple a scalar field to the timelike vector and show via

the tunneling approach that the universal horizon radiates as a blackbody at a fixed temperature, even if the

scalar field equations also violate local Lorentz invariance. This suggests that the class of holographic

theories may be much broader than currently assumed.

DOI: 10.1103/PhysRevLett.110.071301 PACS numbers: 04.70.Dy, 04.60.�m

How general is gravitational holography? Since holog-
raphy is strongly tied to the behavior of horizons in general
relativity, one may naively expect that holography is a
feature of general relativity only or at least extensions of
general relativity that preserve the causal structure of the
light cone. In this Letter, we argue that this may not
necessarily be the case—one can formulate much of black
hole thermodynamics, including a first law for and corre-
sponding thermal radiation from at least spherically sym-
metric horizons, even for a theory that has no universal
light cone and, in fact, violates the equivalence principle.
Such a claim seems contradictory for a myriad of reasons;
e.g., if one no longer has a universal light cone, even the
notion of a well defined horizon is problematic. Also,
without the equivalence principle, particles will not travel
along paths defined by the geometry of the spacetime only,
so identifying the temperature of a surface in spacetime
with a geometric ‘‘surface gravity’’ seems impossible.
However, as we show here, many of the existing concepts
and constructions developed over the years for general
relativity can be adapted for use in theories with modified
casual structure.

Similar questions have been recently asked with two
particularly relevant lines of inquiry. First, black holes
have been extensively studied [1] in Horava-Lifshitz grav-
ity [2], where the gravitational action is modified by the
introduction of a preferred spacelike foliation, thereby
breaking Lorentz invariance and significantly changing
the causal structure of the theory. Without a corresponding
modification of the matter action, the horizon of the black
hole is the null Killing horizon, and one can investigate the
behavior of this surface (cf. [3]), which indicates a viola-
tion of the entropy-area law familiar from general relativ-
ity. Such results are, however, inconsistent, as the existence
of the preferred foliation in the gravitational sector will, via
quantum corrections [4,5], generically violate Lorentz in-
variance in the matter sector as well. Therefore, the Killing

horizon is no longer the causal horizon, and its entropy is
not of interest.
This leads to the second line of reasoning, the nature of

black hole thermodynamics in theories where Lorentz
invariance is violated in the matter sector. In [6,7], the
authors considered two matter fields with different speeds
of propagation and showed that the Killing horizon splits
into two horizons leading to perpetual motion machines
and violations of the generalized second law. This is incon-
clusive, though, as generically there will be higher dimen-
sion Lorentz violating operators as well, and causal
boundaries must be causal boundaries for all excitations,
not just low energy ones, if you wish to apply a generalized
second law. If one has causally modified gravitational and
matter sectors in a theory and allows for higher dimension
Lorentz violating operators in the matter sector, both
pictures above change dramatically: There are causally
inaccessible regions, the boundaries of such regions are
the same for all fields but are not Killing horizons, and
there exist first laws for these boundaries. In this Letter, we
show that the boundaries radiate thermally, thereby
strengthening a possible thermodynamic interpretation,
although open questions remain (which we address in the
discussions section below).
The gravitational theory we consider as our toy model is

Einstein-æther theory [8], a generally covariant theory of
the metric coupled to ‘‘the æther,’’ a unit timelike vector
field ua. The Lagrangian L of the theory is given by

L ¼ 1

16�G�

½R� Zab
cdðrau

cÞðrbu
dÞ þ �ðu2 þ 1Þ�;

(1)

with Zab
cd¼c1g

abgcdþc2�
a
c�

b
dþc3�

a
d�

b
c�c4u

aub�
gcd. The ci are arbitrary parameters of the theory, and � is a
Lagrange multiplier that enforces the unit constraint.
Einstein-æther theory admits spherically symmetric

‘‘black hole’’ solutions in the following manner. Consider
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a static, spherically symmetric spacetime, and cover it with
the Painlevé (free-fall) coordinates such that the metric
takes the form

ds2 ¼ �dt2 þ ½�ðrÞdtþ fðrÞdr�2 þ r2d�2
2; (2)

where t is the Painlevé time function and �ðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �a�

a
p

, �a � @t being the time translation Killing
vector. Now let �U denote a surface orthogonal to the
æther vector ua, so that U is the ‘‘æther time’’ generated
by ua that specifies each hypersurface in a foliation (ua is
hypersurface orthogonal). Causality for matter fields is
ensured by requiring that field excitations propagate to
the future in U, so that no closed timelike curves are
possible, even though field excitations may travel super-
luminally. If one chooses ua such that at asymptotic spatial
infinity �a and ua coincide, then as one moves in towards
r ¼ 0 each �U hypersurface bends down to the infinite
past in t, eventually asymptoting to a three-dimensional
spacelike hypersurface on which ðu � �Þ ¼ 0, which
implies that the Killing vector �a becomes tangent to
�U. This hypersurface is the universal horizon [9]. It is a
regular [10,11] causal boundary, as any signal must propa-
gate to the future in U, which is necessarily towards
decreasing r at the universal horizon.

Since Einstein-æther is generally covariant, one expects
[12] the existence of a Smarr formula and corresponding
first law of black hole mechanics. Such a law exists [13]
for ranges of the ci’s, 0 ĉ14 < 2, c13 < 1 and 2þ c13 þ
3c2 > 0, where we use the notation c14 ¼ c1 þ c4, etc.
These are sufficient constraints to ensure energetic stability
and a good Newtonian limit as well. For two special
choices of the coefficients, c14 ¼ 0 and c123 ¼ 0, analytic
solutions have been found [13], and for these solutions the
first law takes the form

�M� ¼ ð1� c13Þ�UH�AUH

8�G�

; (3)

whereM�, the total mass of the spacetime, is related to the
Arnowitt-Deser-Misner mass by M� ¼ ð1� c14=2ÞMADM

and �UH is the surface gravity at the universal horizon, i.e.,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2 ðra�bÞðra�bÞ
q

evaluated at the universal

horizon.
Spherically symmetric Einstein-æther solutions possess

an extra scalar æther-metric degree of freedom [11], which
generically travels at a speed different from the speed of
light [14]. Outgoing matter radiation may therefore emit
æther-metric Čerenkov radiation. For the exact solutions
the speed of the æther-metric mode goes to infinity (c14 ¼
0) or zero (c123 ¼ 0). For infinite speed modes Čerenkov
radiation is forbidden, while for zero speed modes there is
no energy lost [15], and so for these solutions Čerenkov
radiation can be ignored. The exact solutions also have the
metric component fðrÞ ¼ 1 [13].

A first law alone does not imply that universal horizons
have a thermodynamic entropy proportional to the area

associated with them. Since the universal horizon forms a
causal boundary, one can imagine throwing objects
through the universal horizon and argue that the general-
ized second law would be violated if the universal horizon
had no entropy, similar to the standard argument in general
relativity [16]. However, in order to concretely argue for a
thermodynamic interpretation of the first law, one must at
least show that the universal horizon radiates thermally.
Radiation from the universal horizon.—In the tunneling

approach for Hawking radiation from a stationary black
hole, one considers particle pair creation near the event
horizon [17–19]. The radiation is composed of positive
energy outgoing particles (traveling forward in Killing
time) that escape from just inside the horizon and negative
energy ingoing particles (traveling backward in time) that
fall into the black hole from just outside. Both these
processes are forbidden classically, and therefore the quan-
tum mechanical nature of the process is clear. A finite
energy excitation measured at infinity is infinitely blue-
shifted near the event horizon, and so the semiclassical
limit (in the form of WKB or eikonal or Hamilton-Jacobi
methods) is adequate for calculating the tunneling ampli-
tude [18,19]. In the following, we consider spherically
symmetric radiation of a neutral scalar field using
Painlevé-Gullstrand coordinates (2), which are smooth
everywhere for the exact solutions.
Let � be a neutral scalar field governed by an action

S½��. In the semiclassical approximation, a given classical
configuration �ðxÞ is interpreted as the wave function
associated with the quantum state of a � excitation and
is written as

�ðxÞ ¼ �0 expfiS½�ðxÞ�g; (4)

where �0 is a ‘‘slowly varying’’ (� const) profile and
S½�ðxÞ� is the scalar field action evaluated on the configu-
ration �ðxÞ. If ka is the four-momentum of such an exci-
tation, then from the standard rules of quantum mechanics
�ira�ðxÞ ¼ ka�ðxÞ, whence one obtains the covarian-
tized Hamilton-Jacobi equations

ka ¼ raS½�ðxÞ�: (5)

Of course, (5) does not have any dynamical content yet,
because we still have not imposed any equation of motion.
In the eikonal approximation, this is achieved by imposing
an appropriate energy-momentum dispersion relation on
ka (5); we will come back to this below.
Specializing to spherical symmetry, we make the stan-

dard ansatz for the phase of the field configuration (4)

S ½�ðt; rÞ� ¼ �!tþ
Z r

dr0krðr0Þ: (6)

Comparing (5) with (6) we see ðk � �Þ ¼ �!; i.e., !
(which is positive by assumption here and henceforth) is
the magnitude of the Killing energy of the excitation, and
the top (bottom) signs refer to positive (negative) energy
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excitations, while krðrÞ is the three-momentum of the
excitation with respect to the free-fall observer.

The ansatz (6) along with a dispersion relation allows us
to solve for krðrÞ in terms of! and the metric components.
As we show below, the superluminal dispersion that we
will consider has four physical solutions: k�rðIÞðrÞ and

k�rðOÞðrÞ, where þ (�) refers to positive (negative) energy

and subscript I (O) means in(out)going. By time-reversal
invariance we further have kþrðOÞðrÞ ¼ �k�rðIÞðrÞ and

kþrðIÞðrÞ ¼ �k�rðOÞðrÞ. Among these, kþrðOÞðrÞ and k�rðIÞðrÞ
will be shown to be singular at the universal horizon
(classically forbidden trajectories), while kþrðIÞðrÞ and

k�rðOÞðrÞ will be smooth. The tunneling probability, given

by �� exp½�2ImS�, can then be evaluated by using (6) as

2ImS ¼ Im lim
�!0

�Z rUHþ�

rUH��
dr0kþrðOÞðr0Þ �

Z rUH

rUHþ�
dr0k�rðIÞðr0Þ

�
;

where rUH is the location of the universal horizon. The first
term corresponds to the tunneling of a positive energy
mode out of the black hole, while the second yields the
corresponding negative energy tunneling in part. The
imaginary parts of the integrals are due to the singularities
on the contours of the integration. To evaluate the integrals,
we push the contours below the singularity in the first
integral and above the singularity in the second [18]. The
imaginary part then effectively comes from the residue of a
closed counterclockwise circuit encircling the singularity
at the universal horizon

2ImS ¼ Im
I

drkþrðOÞðrÞ: (7)

If the right-hand side is linear in ! (up to ! independent
chemical potential terms), then the emission is thermal.

We now need to specify the scalar field action in order to
calculate the spectrum from the universal horizon. Wewish
to violate Lorentz invariance and examine higher dimen-
sion operators (while keeping the field equations second
order in U-time derivatives), so we choose our model
Lagrangian as

L ¼ � s2�
2
gabð�Þðra�Þðrb�Þ � ð ~r2

�Þ2
2k20

; (8)

where gabð�Þ ¼ gab � ðs�2
� � 1Þuaub and ~ra is the projected

(spatial) covariant derivative on �U. The signs of the s2�
(squared low energy speed of the � excitations) and k20
terms are chosen so that all modes are propagating modes
in flat space. This leads to the following dispersion relation
in the æther frame upon using (5) and (6):

kuðrÞ2 ¼ ksðrÞ4
k20

þ s2�ksðrÞ2 þ
½rsksðrÞ þ k̂ksðrÞ�2

k20
; (9)

where �kuðrÞ � �ðu � kÞ and ksðrÞ � ðs � kÞ are the æther
frame energy and momenta of the excitation, respectively,

sa is the unit spacelike vector orthogonal to ua (and so is
parallel to �a at the universal horizon), rs � sara, and

finally k̂ is the trace of the extrinsic curvature of the two-
spheres of constant r and t embedded in�U [13]. There are
obviously a whole tower of operators that could be added
to the Lagrangian (8) which yield different dispersion
relations and satisfy our above requirements; we choose
the lowest two operators for simplicity. Another important
point is that all propagating matter excitations with positive
(negative) Killing energy must have positive (negative)
æther frame energy everywhere as well, since by (9) the
four-momentum would otherwise have to vanish some-
where which is unphysical for a propagating mode. This
can be seen as follows: Consider a positive Killing energy
excitation. Its æther frame energy equals its Killing energy
at infinity. Now, if its æther frame energy is negative
somewhere in the bulk, then it needs to vanish somewhere
before that. By (9), ksðrÞ ¼ 0 at that point, and hence the
mode has a zero four-momentum which is unphysical for a
propagating mode. The same argument applies to negative
Killing energy excitations.
To solve (9) and evaluate (7) eventually, we need to

relate krðrÞ, kuðrÞ, and ksðrÞ. Using (5) and (6), we find

kuðrÞ ¼ �!þ ksðrÞðs � �Þ
ðu � �Þ ;

krðrÞ ¼ �! sinh	þ ksðrÞ
ð�u � �Þ ;

(10)

where 	 � 	ðrÞ is a position-dependent boost angle relat-
ing the four-vector ta defining the free-fall observer to the
æther frame according to ta ¼ cosh	ua � sinh	sa. At the
universal horizon, sinh	UH ¼ j�j�1

UH.
Since we need only to extract the residue of krðrÞ for the

appropriate ingoing or outgoing mode at r ¼ rUH (7), a
Laurent series solution of (9) around the universal horizon
is sufficient. Now (9) is a fourth-order equation and gen-
erally has four solutions (all with positive Killing energy).
As we discuss below, only two out of these solutions have
positive æther frame energy and are therefore physically
meaningful; they will be identified as kþrðIÞðrÞ and kþrðOÞðrÞ,
respectively. Using the U-time-reversal invariance of (9)
we can then find the corresponding negative Killing energy
solutions k�rðOÞðrÞ and k�rðIÞðrÞ, respectively, by switching

! ! �! and ksðrÞ ! �ksðrÞ.
For the positive energy ingoing mode, ksðrÞ must be

regular at the universal horizon. This regularity require-
ment fed into (9) yields ksðrUHÞ ¼ �!j�j�1

UH, showing that
we do have an ingoing mode. Also, as indicated above,
there are two regular solutions with the same value of
ksðrUHÞ but with kuðrUHÞ differing by a sign. We can then
discard the solution with negative æther energy (but posi-
tive Killing energy) as being unphysical, as it cannot
represent a propagating solution everywhere in the bulk.
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Note, by (10), ½ðu � �ÞkrðrÞ�UH ¼ 0, showing that krðrÞ is
finite at the universal horizon for the regular modes.

We now turn to the remaining two solutions of (9) for
which ksðrÞ must be singular at the universal horizon. This
is captured by the ansatz

ksðrÞ ¼ bðrÞ
ð�u � �Þm ; m > 0; bðrUHÞ � 0; (11)

where bðrÞ is some function that is finite at the universal
horizon and m is the largest positive real number such that
½ð�u � �ÞmksðrÞ�UH is finite. From (11) one can now prove
that the ksðrÞ4 piece is the most singular piece on the right-
hand side of (9) near the universal horizon. Hence, there is
an approximate scale invariance characterized by a Lifshitz
exponent z ¼ 2 for the scalar field near the universal
horizon. Continuing the analysis further, we finally con-
clude that (9) is satisfied if and only if

m ¼ 1; bðrUHÞ ¼ �k0j�jUH: (12)

For the negative solution of bðrUHÞ, the excitation has
negative æther frame energy near the universal horizon
and hence is unphysical. Therefore we must restrict bðrÞ
to be strictly positive at (and outside) the universal horizon.
In this manner (11) and (12) [with bðrUHÞ positive] corre-
spond to the positive energy outgoing excitation; the
singular nature of ksðrÞ is very much expected, as this is
the mode that is tunneling out through the universal hori-
zon. Finally, by plugging (11) into (10) and invoking time
reversal, the physical solutions of (9) are

kþrðOÞðrÞ ¼ �k�rðIÞðrÞ ¼
! sinh	

ð�u � �Þ þ
bðrÞ

ð�u � �Þ2 : (13)

Hence, we have identified all the physical solutions of (9).
The solutions (13) contribute to 2ImS in Eq. (7). We

perform a Laurent expansion of (9) around r ¼ rUH, solve
for b0ðrUHÞ, and apply Cauchy’s integral formula to com-
pute the residue, which depends on bðrUHÞ and b0ðrUHÞ.
Putting everything together, we finally find

2ImS ¼ !

TUH

þ 2�c�k0rUH
N

; (14)

where

TUH ¼ ða � sÞUHj�jUH
4�

¼ c�
4�rUH

¼ ðc�=cUHÞ
8�GNM�

: (15)

Here ða � sÞUH is the magnitude of the acceleration ruu
a

evaluated on the universal horizon, cUH ¼ 1
2 ,

3
4 and N ¼ 1,

3
ffiffiffi
2

p
for the c123 ¼ 0 and the c14 ¼ 0 solutions, respec-

tively, c� is given by

c� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

cUH

�
2� c14
1� c13

�s
; (16)

and, finally, GN is Newton’s constant, related to G� (1) by
G� ¼ GNð1� 1

2 c14Þ [20]. Since the solutions at hand

depend on a single parameter (the mass), one can further
write TUH ¼ ð4�c�Þ�1�UH, thereby making a contact with
the first law (3). It is, however, unclear whether associating
the temperature with the surface gravity is natural for a
(non-Killing) universal horizon.
The tunneling probability is � / e�2ImS; therefore,

in terms of the chemical potential 
0 ¼ �c2�k0=2N, (14)

leads to �� e�ð!�
0Þ=TUH . By detailed balance, this
yields a thermal spectrum [18,19], with a temperature
given by (15).
Discussions.—Previous studies of Lorentz violating

black hole thermodynamics argued for a violation of the
generalized second law with only different speeds for
fields. Here we have included higher derivative Lorentz
violating terms in the matter action (8) which changes the
nature of the causal boundary appropriate for generalized
second law arguments and how Lorentz violation affects
the emission spectrum. The spectrum remains thermal,
even if fields have different values of k0—only the effec-
tive chemical potential 
0 changes for each field. This is
possible, as for any k0 the universal horizon remains the
unique causal boundary for high frequency modes, so the
spectrum is dictated by the nearby local geometry.
While the first law and this result are suggestive, there

are still open questions. First, the issue of reprocessing near
the Killing horizon [21–23] is very important, as previous
work has shown that the WKB approximation for low
frequency modes breaks down near the Killing horizon
even in the presence of Lorentz violation. Indeed, one
can examine numerically the validity of the WKB approxi-
mation for our modes propagating on our exact solutions
and the approximation also breaks down at the Killing
horizon as the Killing frequency ! becomes less than k0,
which indicates that significant further processing of low
frequency modes may occur there. It is therefore possible
that an observer at infinity would see a split or otherwise
modified spectrum, which is qualitatively similar to recent
results obtained by Busch and Parentani [24] for Lorentz
violating fields with de Sitter horizons. However, the fur-
ther processing of low frequency modes by the Killing
horizon is effectively a graybody factor and does not
necessarily modify the essential nature of the universal
horizon thermodynamics. Second, it is also possible that
the universal horizon and the interplay of the thermal
emission and Killing horizon reprocessing does not save
one from the generalized second law violation arguments
presented for two-speed Lorentz violating theories, which
may indicate an instability of the universal horizon [9]. We
will return to these issues in future work.
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