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The interior of a neutron star is likely to be predominantly a mixture of superfluid neutrons and

superconducting protons. This results in the quantization of the star’s magnetic field into an array of thin

flux tubes, producing a macroscopic force very different from the Lorentz force of normal matter. We

show that in an axisymmetric superconducting equilibrium the behavior of a magnetic field is governed by

a single differential equation. Solving this, we present the first self-consistent superconducting neutron

star equilibria with poloidal and mixed poloidal-toroidal fields and also give the first quantitative results

for the corresponding magnetically induced distortions to the star. The poloidal component is dominant in

all our configurations. We suggest that the transition from normal to superconducting matter in a young

neutron star may cause a large-scale field rearrangement.
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There is now compelling evidence that the bulk of a
neutron star is composed of superfluid neutrons and super-
conducting protons. It has long been thought that neutron
stars would be cold enough to contain these states of matter
[1–3], based on expectations from the theory of terrestrial
superconductivity [4]. A long-standing piece of evidence
in favor of superfluidity is the phenomenon of pulsar
glitches—sudden events in which the star spins up slightly
[5]. The best explanation for the larger glitches is as a
transfer of angular momentum from the more rapidly
rotating superfluid to the crust. In addition, recent obser-
vations of the rapidly cooling young neutron star in the
Cassiopeia A supernova remnant are well explained by the
onset of neutron superfluidity together with proton super-
conductivity in the core [6,7], suggesting that these com-
ponents will be present in a neutron star below a critical
temperature of around 109 K. The most highly magnetized
neutron stars, the magnetars, have high observed tempera-
tures which might suggest that their transition to super-
fluidity is delayed. This is due to crustal heating, however,
while the thermally decoupled magnetar core is expected
to cool rapidly below the critical temperature [8]. Thus all
observed neutron stars are likely to contain superfluid and
superconducting components.

In terrestrial superconductors the Meissner effect expels
any magnetic field below some critical strength, but in
neutron stars the expulsion time scale is extremely long
[2], so the magnetic field exists in a metastable state.
Nonetheless, it is affected: In a large part of the star, the
protons are expected to form a type-II superconductor,
meaning that the field will be quantized into flux tubes
surrounded by unmagnetized matter. On the macroscopic
scale, this changes the nature of the magnetic force from
the Lorentz force of normal matter to a flux tube tension
force [9–11]. The innermost part of the core may exhibit
type-I superconductivity [12,13], with large regions of
alternating normal and superconducting matter; the effect

of this on the global magnetic field is unknown
at present. Alternatively, the star’s hadronic matter could
give way to an inner core of ‘‘color superconducting’’
quark matter [14,15].
A neutron star’s magnetic field can play a variety of

important roles. It affects the temperature and rotational
evolution of the star—and rotation is the key observational
feature used to determine the star’s age. Understanding the
interior fields of apparently different classes of neutron star
could help unify them into a single canonical stellar model
[16,17]. Magnetic field effects could explain the differing
nature of glitches in pulsars and magnetars and postglitch
recovery [18]. In magnetars, the magnetic field provides
the energy that powers their giant flares and is important
for understanding their observed quasiperiodic oscilla-
tions [19,20]. Finally, a magnetic field induces a distortion
which will generally not be aligned with the star’s rotation
axis. This system will therefore produce gravitational
waves [21], perhaps at an amplitude great enough for
future detection.
Motivated by the above reasons, there has been a great

deal of recent work on neutron star magnetic fields, but
almost all of it is based on models assuming normally
conducting matter. This may be partly because this case
is more familiar, thanks to the large body of literature on
nondegenerate stars [22]. For neutron stars, superconduc-
tivity is a key missing ingredient, whose inclusion is an
essential step toward more realistic models.
In this Letter, we try to lay some foundations for the

modeling of superconducting neutron stars. We study equi-
librium configurations, motivated by the observation that
neutron star magnetic fields appear to be long-lived, evolv-
ing only on long time scales. We show that in axisymmetry
the magnetic field of a superconducting star is governed
by a single differential equation. This is analogous to the
Grad-Shafranov equation for normal matter [23,24] but
more complicated: It involves terms related to the local
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field strength. We describe a method of solution for the
equation and present the results. Other than the special case
of a purely toroidal field [25,26], these are the first self-
consistent solutions for magnetic fields in a superconduct-
ing star (see, however, the simplified poloidal-field model
constructed in Ref. [27]). Since the submission of this
Letter, a new study on poloidal fields has appeared [28].
We compare with the corresponding normal-matter results
and discuss the implications for the internal magnetic fields
of neutron stars.

Axisymmetric magnetic stars.—We model a neutron star
as a three-fluid system, with superfluid neutrons, electrons,
and type-II superconducting protons. The electrons have
negligible inertia, however, and their chemical potential
can be incorporated into that of the protons. Therefore we
can reduce to a two-fluid system of equations, denoting
neutron quantities with a subscript n and the combined
proton and electron quantities with a p. We choose a rather
idealized equation of state, a two-fluid analogue of a poly-
trope [29], so that the chemical potential ~�x of each species
(x ¼ fn; pg) is a function of the corresponding mass
density �x: ~�x ¼ ~�xð�xÞ. By working in cylindrical polar
coordinates ($, �, z), the two Euler equations for our
model may be written

r
�
~�x þ��$2�x

2

�
¼ Fx

�x

; (1)

where � denotes gravitational potential, �x rotation rate,
and Fx magnetic force. Although we consider only non-
rotating models here, the following derivations and
numerics follow through for cases with corotating neutrons
and protons, �n ¼ �p. In general, one would expect an

entrainment effect, leading to coupling between neutrons
and protons and to an effective magnetic force on the
neutrons. We neglect this for simplicity, so that Fn ¼ 0,
and write the proton force as Fmag. The particle species are

therefore coupled only through gravity,

r2� ¼ 4�Gð�n þ �pÞ: (2)

Now, taking the curl of the proton Euler equation, we see
that there exists a scalar M such that

Fmag

�p

¼ rM; (3)

regardless of whether the protons are normal or super-
conducting. Another universal result is that B must be
divergence free; using this together with the assumption
of axisymmetry allows us to write

B ¼ 1

$
ru� e� þ B�e�; (4)

which defines the stream function u. Note thatB � ru ¼ 0;
field lines are parallel to constant-u contours.

Normal matter.—In this familiar case, Fmag is the

Lorentz force, given by

Fmag ¼ 1

4�
ðr � BÞ �B: (5)

It can be shown that the toroidal field component is gov-
erned by a function fNðuÞ ¼ $B� [23,24]. Using this and

the general results of the last section, one may derive the
Grad-Shafranov equation,

��u � @2u

@$2
� 1

$

@u

@$
þ @2u

@z2

¼ �4��p$
2 dM

du
� fN

dfN
du

: (6)

This governs the form of a poloidal or mixed poloidal-
toroidal field in axisymmetric equilibrium. The single-fluid
version of this has been the basis of numerous studies of
magnetic stars.
Superconducting matter.—By averaging the contribution

of the flux tubes in a type-II superconductor, one arrives at
a macroscopic expression for the magnetic force [9–11],

Fmag ¼ � 1

4�

�
B� ðr�Hc1Þ þ �pr

�
B
@Hc1

@�p

��
; (7)

where Hc1 ¼ Hc1B̂ is the microscopic critical field, B the

smooth-averaged macroscopic field, and B̂ ¼ B=B the unit
tangent vector to the magnetic field. In the absence of
entrainment, Hc1 ¼ hc�p to a good approximation, where

hc is a constant [11]. Using this relation and Eqs. (4) and
(7), we get an expression for the magnetic force with
various poloidal terms (see Ref. [26]) and one toroidal
term, which must be zero by axisymmetry,

ðFmagÞ� ¼ ru�rð�p$B̂�Þ ¼ 0: (8)

This gives us a dichotomy: Satisfying (8) leads to either a
mixed poloidal-toroidal field or a purely toroidal field. For
the latter case, we satisfy (8) by taking ru ¼ 0; this has
been discussed in earlier work [25,26]. For the former, we

require that ru and rð�p$B̂�Þ be parallel, which leads to
�p$B̂� ¼ fðuÞ (9)

for some function f. In the special case fðuÞ ¼ 0, the field
is purely poloidal.
One key step in the derivation of the Grad-Shafranov

equation is showing that M ¼ MðuÞ. In the superconduct-
ing case this is no longer true. We can, however, define a
related function y which is a function of u,

yðuÞ ¼ 4�M

hc
þ B: (10)

Using the functions yðuÞ and fðuÞ, together with the poloi-
dal magnetic-force terms from Ref. [26], we arrive at a
single differential equation governing the magnetic field,
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��u ¼ r� � ru
�

�$2�p�
dy

du
��2f

df

du
; (11)

where � � B=�p. The above equation is the equivalent

of the Grad-Shafranov equation when the protons form a
type-II superconductor instead of being a normal fluid.
The result for a single-fluid superconducting star may be
obtained by replacing �p with �, the total density, and is

valid for barotropic equations of state. The most significant
differences from the normal case are the presence of the�
factors and the fact that the magnetic force no longer
appears explicitly through the function M.

Superconducting core and normal crust.—The super-
fluid and superconducting matter of a neutron star’s core
do not extend to the stellar surface; instead, the star has an
elastic crust of normal matter. It is also numerically diffi-
cult to solve Eq. (11) matched directly to a potential field
(r� B ¼ 0) exterior. For these reasons we choose a
canonical neutron star model with a core of superfluid
neutrons and type-II superconducting protons, matched to
a single-fluid relaxed crust composed solely of normal
protons; this in turn is matched to a vacuum exterior with
potential field at the stellar surface R�.

The complicated physics at a neutron star’s crust-core
boundary may well include the presence of a current sheet
and a discontinuity in the magnetic field (Ref. [28] contains
some discussion of this issue). In addition, the pinning of
flux tubes to the crust could be important. Quantifying
these effects is beyond the scope of this Letter, however,
so for this first study we assume continuity of the magnetic
field at the boundary. We also demand magnetic force
balance, matching the smooth-averaged flux tube tension
force and the Lorentz force at the crust-core interface.
More specifically, we define the crust-core boundary as
an isopycnic contour �p ¼ �cc

p (at a near-constant radius

of r ¼ 0:9R�), requiring that the magnetic-force scalar func-
tionM be continuous and thatHc1 ! B there. This may be
done by defining the superconducting functions yðuÞ and
fðuÞ in terms of their normal-matter counterparts MNðuÞ
and fNðuÞ, respectively,

yðuÞ ¼ hc�
cc
p þ 4�MNðuÞ=hc; (12)

fðuÞ ¼ fNðuÞ=hc: (13)

This then allows for smoothmatching of the right-hand sides
of the two governing equations (6) and (11).

Numerics.—The governing equation for superconducting
equilibria (11) is harder to solve than the Grad-Shafranov
equation (6). The latter is itself unusual in having the argu-
ment u appear on both the left- and right-hand sides, but the
superconducting version also has the quantity �, which
implicitly involves derivatives of u,

� ¼ jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2�2

p � f2
q : (14)

With a direct solution seeming infeasible, this problem is
suited to a numerical iterative method, where both the left-
and right-hand sides are gradually updated until the scheme
converges and produces a consistent solution for u. We use
an adapted self-consistent field method [26,30], allowing for
high multipolar structure, and employ an underrelaxation
step for the solution of Eq. (11).
Using the virial theorem [31], we confirm that our results

are indeed equilibrium solutions, with a relative error of
the order of 10�5. This error decreases accordingly with
increasing resolution. As another check, we have con-
structed equilibria with increasing field strength (and hence
distortion), confirming that the induced distortion scales in
the expected manner: linearly in Hc1B [9,32]. Details of
these tests and the numerical method will be presented in a
later paper.
Results.—We consider a stratified stellar model with a

composition gradient; i.e., the proton fraction �p=� varies

within the star. Various forms for the magnetic functions
are permissible. We choose fNðuÞ ¼ aðu� uintÞ� when
u > uint and fNðuÞ ¼ 0 otherwise, where uint is the largest
contour of u (i.e., field line) that closes within the star; this
avoids having an exterior current. We also take MNðuÞ ¼
�u2 unless otherwise stated. Here a, � , and � are constants
related to the strength of the magnetic field components.
The figures are presented in dimensionless units, since the
structure of the magnetic field is essentially independent of
its strength.
We begin by looking at a purely poloidal field, in Fig. 1.

This is broadly similar to the corresponding field in a
normally conducting star, with the field strength attaining
a maximum Bmax deep in the star and vanishing in the
center of the closed field-line region. The main difference
is that the superconducting star shown has a far larger
weak-field region than a model with normal protons;
more specifically, a larger volume of the superconducting
star has a field strength B< 0:1Bmax. This effect is even
more pronounced for models with MNðuÞ ¼ �u.
In Fig. 2, we show a typical mixed poloidal-toroidal field

configuration. For stars with normal protons the toroidal
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FIG. 1 (color online). Structure of a poloidal magnetic field in
a superconducting star. On the left we show the magnitude of the
field and on the right its direction (i.e., the field lines). The stellar
surface R� is indicated with the solid arc at a dimensionless
radius of unity, while the dashed line at 0:9R� shows the location
of the crust-core boundary.
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component fills the weak-field region shown in Fig. 1,
producing a twisted-torus configuration [26]. This is par-
tially true here, too—but at the center of the closed field-
line region, where the poloidal field vanishes, the toroidal
component vanishes, too. The resulting toroidal-field ge-
ometry is hence tubular (in three dimensions). The mixed-
field configuration in Fig. 2, like all those we have found, is
dominated by the poloidal component; the toroidal com-
ponent contributes only 0.7% of the total magnetic energy.
This may be related to the fact that Eq. (11) has a purely
poloidal limit but no purely toroidal one.

Next we look at the magnetically induced ellipticity
� ¼ ðQeq �QpoleÞ=Qeq, where Qeq and Qpole represent

the components of the star’s quadrupole moment along
the equator and pole, respectively. We rescale to a typical
1.4-solar mass neutron star with a radius of 10 km and
assume a purely poloidal field. The mass of the normal-
fluid crust is small, so the ellipticity scaling is well approxi-
mated by that of a purely superconducting star,

� ¼ 3:4� 10�8

�
Bs

1012 G

��
Hc1ð0Þ
1016 G

�
; (15)

where Bs denotes the surface field strength at the pole. We
adopt a central critical field of Hc1ð0Þ ¼ 1016 G, using the
approximate formula given in Ref. [11]. For comparison, in
the same stratified two-fluid model but with normal protons
we find (using the code described in Ref. [26])

� ¼ 2:6� 10�11

�
Bs

1012 G

�
2
: (16)

A simple way to approximate the ellipticity of a super-
conducting star is to take a result for normal matter and
scale it up by a factor Hc1=B, taking Hc1 ¼ 1015 G.

Comparing our ellipticity formulas (15) and (16), both
from self-consistent calculations, we see that for a given
Bs this approach would underestimate the star’s distortion
by around 30%. Choosing MNðuÞ as a higher power of u
increases the ratio of average internal field �B to Bs and
hence the ellipticity at a fixed value of Bs. This is summa-
rized in Table I.
Discussion.—We have described a method to solve for

the magnetic field in a neutron star with type-II supercon-
ducting protons. The magnetic force is more complicated
in this case than for normal matter, but for an axisymmetric
equilibrium we show that it may be simplified to a single
differential equation in the stream function and the local
field strength, in analogy with the Grad-Shafranov equation
of normal matter. We solve this by using an iterative
scheme, presenting the first self-consistent models of a
superconducting neutron star (other than the special case
of a purely toroidal field).
Perhaps the most notable difference from normal-matter

models is the generic appearance of a region in the star
where the field strength vanishes. This may have repercus-
sions for the dynamics of a neutron star; in normal matter,
it is known that such a region leads to an instability [33,34].
Whether such an instability occurs in superconducting
matter is an interesting open question.
The interior field of a neutron star cannot necessarily be

inferred from the observed exterior dipole field. If many
poloidal field lines close within the star, or if there is a
strong toroidal component, the internal field could be much
stronger than expected from outside—a ‘‘hidden’’ energy
reservoir for the star. In ourmodels the average interior field
strength is 1.5–2.7 times that at the polar surface. The
contribution of the toroidal component appears to be ge-
nerically small, however; in our equilibria it accounts for
less than �1% of the magnetic energy. This is different
from recent simulations for main-sequence stars, which
found stable equilibriawith large toroidal components [35].
A leading theory for the origin of neutron star magne-

tism (for magnetars, in particular) is that dynamo action
in the young star generates a strong, dominantly toroidal
field [36]—in contrast to our equilibria for mature neutron
stars. This may cast doubt on the validity of our equilibria
or the dynamo scenario. Alternatively, both could be rea-
sonable—then, as a hot young neutron star cools to a
multifluid state with superconducting protons, its strong
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FIG. 2 (color online). A mixed poloidal-toroidal magnetic
field in a superconducting star. We show the poloidal field lines
in black and the magnitude of the toroidal-field component with
the gray (color) scale. The stellar surface and crust-core bound-
ary are indicated with the solid and dashed circles, respectively.
Note that the toroidal component has a tubular structure, vanish-
ing in the center of the closed field-line region.

TABLE I. The ratio �B=Bs of average internal field to polar
field and the prefactor k� of the ellipticity formula (15), for
different poloidal-field configurations [specifically, different re-
lations between the stream function u and the magnetic-force
function MNðuÞ].
MNðuÞ scaling u u2 u3 u4

�B=Bs 1.5 2.1 2.7 2.5

k�½10�8� 2.5 3.4 3.9 3.5
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toroidal field would no longer be in equilibrium. It would
have to undergo large-scale rearrangement to a poloidal-
dominated equilibrium, a potentially violent transition
which could be observable.

The effect of superconductivity on neutron star magnetic
fields has been, to date, neglected by the vast majority
of studies. This Letter demonstrates that in the simplest
equilibrium models it may be accounted for by using
similar techniques as for normal-matter stars. Two key
issues which future work should address are the presence
of a magnetic force on the neutrons and the physics at the
crust-core boundary. Beyond this, superconductivity will
surely also play an important role in the evolution and
dynamics of neutron stars.
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