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We show that generic systems with a single relevant conserved quantity reach the Carnot efficiency in

the thermodynamic limit. Such a general result is illustrated by means of a diatomic chain of hard-point

elastically colliding particles where the total momentum is the only relevant conserved quantity.
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Conservation laws strongly affect transport properties.
Conserved quantities may lead to time correlations not
decaying with time, so that transport is not diffusive
and is described, within the linear response theory, by
diverging transport coefficients. This ideal conducting
(ballistic) behavior can be firmly established as a conse-
quence of an inequality by Mazur [1–3] which, for a
system of size � characterized by M conserved quantities
Qn, n ¼ 1; . . . ;M, bounds the time-averaged current-
current correlation functions as

lim
t!1

1

t

Z t

0
dt0hJðt0ÞJð0ÞiT � XM

n¼1

hJQni2T
hQ2

niT
; (1)

where h� � �iT denotes the thermodynamic average at tem-
perature T. The constants of motion, Qn, are orthogonal
to each other, i.e., hQnQmiT ¼ hQ2

niT�n;m, and relevant;

that is, hJQniT � 0 for all n. A nonzero right-hand side in
Eq. (1) at the thermodynamic limit implies a finite Drude
weight for the current J, which in turn indicates ballistic
transport [4,5]. The impact of motion constants on the
electric and thermal conductivities has been widely inves-
tigated [4–7]. In particular, anomalous heat transport has
been discussed for momentum conserving interacting sys-
tems in low dimensions [8,9]. However, to the best of our
knowledge, conservation laws have never been discussed
for coupled flows, in particular, in relation to the problem
of optimizing thermodynamic efficiencies.

The search for a new technology capable of reducing
the environmental impact of electrical power generation
and refrigeration has aroused great interest in thermoelec-
tricity, namely, the possibility to build a type of solid-state
heat engine capable of converting heat into electricity, or,
alternatively, electricity into cooling [10–14]. The main
difficulty is connected to the low efficiency of such heat
engines. We recall that the maximum thermoelectric
efficiency as well as the efficiency at maximum power
[15–19] are determined, within the linear response regime
and for systems with time-reversal symmetry [20], by the
so-called figure of merit ZT, which is a dimensionless
quantity, a combination of the three main transport
properties of a material—the thermal conductivity �, the

electrical conductivity �, and the thermopower (Seebeck
coefficient) S, as well as of the absolute temperature T:

ZT ¼ �S2

�
T: (2)

The maximum efficiency is given by

�max ¼ �C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT þ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT þ 1

p þ 1
; (3)

where �C is the Carnot efficiency, while the efficiency
�ðWmaxÞ at maximum output power Wmax reads [15]

�ðWmaxÞ ¼ �C

2

ZT

ZT þ 2
: (4)

The only restriction imposed by thermodynamics is
ZT � 0, so that both efficiencies are monotonically grow-
ing functions of the figure of merit and �max ! �C,
�ðWmaxÞ ! �C

2 , when ZT ! 1. It has been suggested

that the value ZT ¼ 3 is the target to be achieved in order
to make thermoelectric engines economically competitive.
In spite of recent progress in material science, present
technology is limited to low ZT materials and no clear
path has been identified in order to increase efficiency.
A promising new approach, based on the theory of

dynamical systems, has been recently introduced [22,23].
The hope is that the analysis of idealized models may lead
to some insight regarding the microscopic mechanisms
which lead to the high figure of merit in more realistic
materials. While for noninteracting systems, even in the
classical framework, the energy filtering mechanism
[24–26] has been shown to allow us to reach Carnot
efficiency, very little is known for interacting particles.
Recent numerical and empirical evidence has shown that
for a one-dimensional diatomic disordered chain of hard-
point elastically colliding particles, the figure of merit ZT
diverges as the number of particles increases [27,28]. Since
it has been verified that the energy filtering mechanism
does not work here [29], it follows that the divergence of
ZT in the thermodynamic limit rests on a different,
unknown property.
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In the present Letter we analyze and solve this problem.
Indeed, we show that for systems having a single relevant
constant of motion, the electric conductivity is ballistic,
i.e., � / �, the heat conductivity is subballistic, � / ��

with �< 1, and the thermopower is size independent,
S / �0, so that the figure of merit ZT / �1�� ! 1 in
the thermodynamic limit � ! 1. Our findings are illus-
trated by the above-mentioned prototype model of an
interacting one-dimensional system: a diatomic chain of
hard-point elastically colliding particles, where the total
momentum is the only relevant constant of motion.

We start from the equations connecting fluxes and ther-
modynamic forces within linear irreversible thermody-
namics [30,31]:

J� ¼ L��X1 þ L�uX2; Ju ¼ Lu�X1 þ LuuX2; (5)

where J� and Ju are the particle and energy currents, and

the thermodynamic forces X1 ¼ �rð��Þ, X2 ¼ r�, with
� the chemical potential and � ¼ 1=T inverse tempera-
ture. (We set the Boltzmann constant kB ¼ 1.) The
Onsager coefficients Lij (i, j ¼ �, u) are related to the

familiar transport coefficients as follows:

�¼ L��

T
; �¼ 1

T2

detL

L��

; S¼ 1

T

�
L�u

L��

��

�
; (6)

where L denotes the Onsager matrix with matrix elements
Lij, and we have set the electric charge of each particle

e ¼ 1. Thermodynamics imposes detL � 0, L�� � 0,

Luu � 0, and Lu� ¼ L�u. The figure of merit reads

ZT ¼ ðLu� ��L��Þ2
detL

: (7)

It diverges (thus leading to maximum efficiency) if and
only if the Onsager matrix L is ill conditioned, that is, in
the so-called strong-coupling condition, for which the
energy and particle currents are proportional, Ju / J�,

the proportionality factor is independent of the values of
the applied thermodynamic forces.

The Green-Kubo formula expresses the Onsager coef-
ficients in terms of correlation functions of the correspond-
ing current operators, calculated at thermodynamic
equilibrium [32,33]:

Lij ¼ lim
!!0

ReLijð!Þ; (8)

where

Lijð!Þ � lim	!0

Z 1

0
dte�ið!�i	Þt

� lim�!1
1

�

Z �

0
d
hJiJjðtþ i
ÞiT: (9)

The real part of Lijð!Þ can be decomposed into a �

function at zero frequency defining the generalized
Drude weight Dij (for i ¼ j ¼ � this is the conventional

Drude weight) and a regular part Lreg
ij ð!Þ:

ReLijð!Þ ¼ 2�Dij�ð!Þ þ L
reg
ij ð!Þ: (10)

Nonzero Drude weights, Dij � 0 for i, j ¼ �, u are a

signature of ballistic transport, namely, Lij / � at the

thermodynamic limit, and therefore the thermopower
S ¼ L�u=ðTL��Þ ��=T / �0.

We now discuss the influence of conserved quantities on
the figure of merit ZT. We make use of Suzuki’s formula
[2] for the currents J� and Ju, which generalizes Mazur’s

inequality (1) by stating that, for a system of finite size �,

Cijð�Þ � lim
t!1

1

t

Z t

0
dt0hJiðt0ÞJjð0ÞiT

¼ XM
n¼1

hJiQniThJjQniT
hQ2

niT
; (11)

where the summation is extended over all theM orthogonal
constants of motion which are relevant for the considered
flows, that is, nonorthogonal to the currents J� and Ju, i.e.,

hJ�QniT � 0 and hJuQniT � 0. (Irrelevant constants of

motion are not included in the summation since they would
give zero contribution.) The presence of relevant conser-
vation laws implies that the finite-size generalized Drude
weights

Dijð�Þ � 1

2�
Cijð�Þ (12)

are different from zero. If at the thermodynamic limit the
generalized Drude weight

D ij ¼ lim
t!1 lim

�!1
1

2�t

Z t

0
dt0hJiðt0ÞJjð0ÞiT (13)

is nonzero, then we can conclude that transport is ballistic
[34]. Note that in Eq. (13) the thermodynamic limit
� ! 1 must be taken before the long-time limit t ! 1.
The below developed theory only applies to the cases
in which the two limits commute, that is, Dij ¼
lim�!1Dijð�Þ [35].
If there is a single relevant constant of motion, M ¼ 1,

due to Suzuki’s formula (11) (and assuming that the
two limits � ! 1 and t ! 0 commute), the ballistic con-
tribution to detL vanishes, since it is proportional to
D��Duu �D2

�u, which is zero from (11). Hence, detL

grows due to the contributions involving the regular part in
Eq. (10), i.e., slower than �2, thus implying that the
thermal conductivity � / detL=L�� grows subballistically.

That is, � / ��, with�< 1. Since� / L�� is ballistic and

S ¼ L�u=TL�� ��=T / �0, we can conclude that ZT ¼
�S2T=� / �1�� ! 1 when � ! 1.
The situation is drastically different if M> 1. In this

case, due to the Schwartz inequality,

D��Duu �D2
�u ¼ jjx�jj2jjxujj2 � hx�; xui � 0; (14)

where
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xi ¼ ðxi1; . . . ; xiMÞ ¼ 1

2�

0
@hJiQ1iTffiffiffiffiffiffiffiffiffiffiffiffi

hQ2
1iT

q ; � � � ; hJiQMiTffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hQ2

MiT
q

1
A; (15)

and hx�; xui ¼ P
M
k¼1 x�kxuk. The equality arises only in the

exceptional case when the vectors x� and xu are parallel.

Hence, forM> 1we expect, in general, detL / �2, so that
heat transport is ballistic and ZT / �0.

In order to illustrate the above general ideas, we consider
a one-dimensional, diatomic disordered chain of N hard-
point elastically colliding particles with randomly distrib-
uted coordinates zi 2 ½0;��, velocities vi, and masses
mi 2 f�1; �2g. The numerically observed divergence of
the figure of merit ZT for �1 � �2 [27–29] can be under-
stood now in terms of the above developed theory. Indeed,
in this system there is a single relevant constant of motion
Q1 ¼ P, where P ¼ PN

i¼1 mivi is the overall momentum

[36]. In this case the particle current J� ¼ P
N
i¼1 vi and the

energy current Ju ¼ P
N
i¼1

1
2miv

3
i . Note that the mass

current, Jm � P
N
i¼1 mivi, equals the total momentum P

and therefore does not decay, while on the other hand
Jm � �mJ�, where �m is the average mass per particle;

hence, we expect that hJ�ðtÞJ�ð0Þi does not decay either,

so that ���.
It is easy to compute analytically the time-averaged

correlation functions Cijð�Þ [from the second line of

Eq. (11)] and then the finite-size generalized Drude
weights

D��ð�Þ ¼ C��ð�Þ
2�

¼ TN2

2�ð�1N1 þ �2N2Þ ;

Duuð�Þ ¼ Cuuð�Þ
2�

¼ 9T3N2

8�ð�1N1 þ �2N2Þ ;

D�uð�Þ ¼ C�uð�Þ
2�

¼ 3T2N2

4�ð�1N1 þ �2N2Þ :

(16)

Here, N ¼ N1 þ N2 with N1 and N2 the number of parti-
cles with mass �1 and �2, respectively. Note that, as
expected from the above theory, D��ð�ÞDuuð�Þ �
D2

�uð�Þ ¼ 0 for any system size �.

To numerically confirm the above results, we compute
the autocorrelation functions of J� and Ju, and the cross

correlation function between them. In doing so we apply
periodic boundary conditions and assign to N1 (N2)
particles of mass �1 (�2) random initial positions and
random initial velocities derived from the Maxwell-
Boltzmann distribution corresponding to temperature
T. We then evolve the system and compute cijð�; tÞ ¼
1
t

R
t
0 dt

0hJiðt0ÞJjð0ÞiT (for i, j ¼ �, u) up to a time t suffi-

ciently long to obtain stable averages, thus estimating
Cijð�Þ ¼ limt!1cijð�; tÞ. We show in Fig. 1 that the

current-current correlation functions hJiðtÞJjð0ÞiT do not

decay to zero as the correlation time is increased, implying
that cijð�; tÞ do not decay either and thus indicating

ballistic transport. We finally estimate the finite-size
generalized Drude weights from the time-averaged corre-
lation functions as cijð�; tÞ=ð2�Þ, with a sufficiently long

time t to approximate the asymptotic value Dijð�Þ ¼
Cijð�Þ=ð2�Þ. As shown in Fig. 2, the numerically

determined values are in very good agreement with the
theoretical values Dij given by Eq. (16).

FIG. 1 (color online). The current-current correlation func-
tions for various system sizes with � ¼ 256 (red dashed curve),
512 (blue dash-dotted curve), and 1024 (black solid curve). The
temperature T ¼ 1, particle masses are �1 ¼ 1 and �2 ¼

ffiffiffi
5

p
. It

is seen that all the current-current correlation functions approach
a finite nonzero value as the correlation time increases and that
the characteristic time scale to approach such value is indepen-
dent of the system size. Note that in all the figures the particle
density is fixed to be N=� ¼ 1 and N1 ¼ N2 ¼ N=2.

FIG. 2 (color online). Comparison between the numerically
determined finite-size generalized Drude weights (symbols)
and their analytical values (lines) given by Eq. (16) for � ¼
256. We set T ¼ 1 and �1 ¼ 1 in (a) and �1 ¼ 1, �2 ¼

ffiffiffi
5

p
in (b).
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Figure 1 provides clear evidence that the convergence
of the correlation functions cijð�; tÞ to their asymptotic

values Cijð�Þ takes place on a time scale independent of

the system size �. Therefore, Fig. 1 provides a strong
indication that for the model under investigation the two
limits � ! 1 and t ! 1 do commute, so that we can
compute the generalized Drude weights at the thermody-
namic limit as Dij ¼ lim�!1Dijð�Þ. Note that in taking

the thermodynamic limit, we keep constant the particle
density N=� and the ratio N1=N2.

Finally, we perform a nonequilibrium calculation of the
various transport coefficients. (For technical details of
numerical simulations see Ref. [28].) According to our
theory, we expect that all the Onsager coefficients grow
linearly with the system size in the thermodynamic limit,
since the generalized Drude weights Dij are all different

from zero. This expectation is confirmed by the data shown
in Fig. 3. Finally, in Fig. 4 we show the transport coeffi-
cients �, S, �, and the thermoelectric figure of merit ZT
as a function of the system size. In agreement with
our theory, we observe that � / �, while S saturates to
the value predicted from theory for ballistic transport,

S ¼ 1
T ðD�u

D��
��Þ ¼ 3

2 , � / �� with � � 1=3 [37,38], and

the growth of the figure of merit in good agreement with
the dependence ZT / �1��.

Note that the above conclusions for the thermal con-
ductivity � and the figure of merit ZT do not hold in the
integrable case �1 ¼ �2, where M> 1 since all moments
of the momentum distribution are conserved quantities. In
this case � / � and it is easy to analytically compute
ZT ¼ 1 [27].

To summarize, we have shown that for systems with a
single relevant constant of motion, the thermoelectric fig-
ure of merit diverges as the system size increases, so that
the Carnot efficiency is achieved at the thermodynamic
limit. Such a result has been illustrated in the case of a

chain of hard-point elastically colliding particles, with a
remarkable agreement between analytical results, equilib-
rium, and out-of-equilibrium numerical simulations. We
would like to point out that, while our illustrative model is
one dimensional, there are no dimensionality restrictions in
our theory, so that it should apply also to two- and three-
dimensional systems in which total momentum is the only
relevant constant of motion. Therefore, our paper unveils a
rather generic mechanism for increasing thermoelectric
efficiency in interacting systems.
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