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We construct a universal set of high fidelity quantum gates to be used on a sparse bipartite lattice with

always-on Ising couplings. The gates are based on dynamical decoupling sequences using shaped pulses,

they protect against low-frequency phase noise, and can be run in parallel on non-neighboring qubits. This

makes them suitable for implementing quantum error correction with low-density parity check codes like

the surface codes and their finite-rate generalizations. We illustrate the construction by simulating the

quantum Zeno effect with the [[4, 2, 2]] toric code on a spin chain.
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Quantum error correction (QEC) makes it theoretically
possible to perform large quantum computations with a
finite per-qubit error rate [1–3]. In practice QEC is
extremely difficult since the corresponding error probabil-
ity threshold is small [4–9]. When only local interactions
between the qubits are allowed, the estimated threshold
value is the highest, around 1%, for toric and related
surface codes [5,9,10]. However, as to how to implement
the operations efficiently and with the required accuracy, is
still an open question.

Qubits with always-on couplings are a natural model for
several potential quantum computer (QC) architectures,
e.g., the original Kane proposal [11], nitrogen vacancy
centers in diamond [12,13], superconducting phase qubits
[14,15], and circuit QED lattices [16,17]. In general, com-
pared to their counterparts with tunable couplings, qubits
with always-on couplings can be expected to have better
parameter stability and longer coherence times. In addi-
tion, over sixty years of development in nuclear magnetic
resonance (NMR) has yielded an amazing degree of con-
trol available to such systems [18,19]. Related techniques
based on selective dynamical decoupling (DD) of parts
of the system Hamiltonian, with carefully designed pulse
sequences, have been further developed in application to
quantum computation [20–26].

While NMR quantum computation is not easily scalable
[27], it still holds several records for the number of coher-
ently controlled qubits [19]. However, some of these have
been achieved with the help of strongly modulated pulses,
computer-generated single- and multi-qubit gates tailored
for a particular system Hamiltonian [28–31]. While such
gates can be used in other QC architectures [32], they may
violate scalability.

On the other hand, NMR-inspired techniques like DD
can also be used to control large systems with local inter-
actions, where the scalability is achieved by designing
pulses and sequences to a given order in the Magnus series
[33] on small qubit clusters [34,35]. DD is also excellent in
producing accurate control for systems where not all

interactions are known as one can decouple interactions
with the given symmetry [36,37]. Moreover, DD works
best against errors coming from low-frequency bath
degrees of freedom which tend to dominate the decoher-
ence rates, and it does not require additional qubits. In
short, DD is an excellent choice for the first level of
coherence protection; its use could greatly reduce the
required repetition rate of the QEC cycle.
This is well recognized in the community and applica-

tions of DD for a QC are actively investigated by a number
of groups. However, most publications on the subject
illustrate general principles using a single qubit as an
example, leaving out the issues of design and simulation
of scalable approaches to multiqubit dynamical decou-
pling. While the techniques for larger systems exist, they
typically require longer decoupling sequences [24,36,38].
The goal of this work is to provide a scalable benchmark

implementation of a universal set of accurate gates using
soft pulses for a system with always-on qubit couplings.
Specifically, we construct one- and two-qubit gates with
built-in DD protection against low-frequency phase noise
for a sparse bipartite lattice of qubits with the nearest-
neighbor (NN) Ising couplings. The constructed gates use
finite-amplitude shaped pulses which can be implemented
experimentally. They are scalable, in the sense that the
same construction works for an arbitrary lattice, and they
can be executed in parallel for different qubits and/or qubit
pairs. This makes them ideal for implementing QEC with
quantum low-density parity check codes [39,40], in par-
ticular, the surface codes and their finite-rate generaliza-
tions [5,41,42]. In the limit of a very slow (classical) bath
the gates are accurate to second order in the Magnus
expansion, meaning that their infidelity scales as sixth or
higher powers of the coupling, in units of inverse pulse
duration. We demonstrate the accuracy of the constructed
gates by simulating the quantum Zeno effect [43,44] for the
[[4, 2, 2]] error-detecting toric code, in repeated cycles, on
an Ising chain. The simulations are done with five qubits,
using classical correlated noise as a source of dephasing.
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Two techniques are essential to our work. First, the use
of NMR-style self-refocusing pulses [34,45–47], which (to
a given order) work as drop-in replacements for hard,
�-function-like pulses. In our simulations, we use the second-
order pulses designed and characterized in Refs. [34,35,46,48].
The second technique is the Eulerian path construction [23],
and its extension, the dynamically corrected gates
[38,49,50], which allow for the construction of composite
pulses accurate to a given order of the Magnus expansion.

We construct our gates for a collection of qubits
arranged on an arbitrary sparse bipartite graph G, with
the edge set E, with an Ising coupling for every edge,

HS � 1

2

X

ðijÞ2E

Jij�
z
i�

z
j; (1)

arbitrary (within the bandwidth) single-qubit control,

HC � 1

2

X

i

X

�¼x;y;z

��
i Vi�ðtÞ; (2)

in the presence of low-frequency phase noise

HN � 1

2

X

i

�z
iBi þHB: (3)

Here, Bi are the bath coupling operators (e.g., from low-
frequency phonons or nuclear spins), and HB is the corre-
sponding bath Hamiltonian independent from �

�
i .

Decoherence resulting from higher-frequency bath
modes, e.g., as described by the Lindblad equation [51],
can also be introduced, but at later design stages, since DD
is not effective against such decoherence. While we do not
consider Markovian decoherence here, we mention in pass-
ing that the main effects of DD are the suppression of
equilibrium population asymmetries (qubits are constantly
flipped), and with soft-pulse DD, the redistribution of deco-
herence rates between the channels [48]. For example, even
if dephasing is dominant for nondriven qubits, any sequence
of finite-width pulses creates some longitudinal relaxation
(compensated by a reduction of the dephasing rate).

To construct the CNOT gate, we use the identity [52]

CNOTcd ¼ ei�=4Yc
�Xc

�YcXd
�Yde

�i�=4�z
c�

z
dYd; (4)

where Xi � expð�i �4 �
x
i Þ, Yi � expð�i �4 �

y
i Þ, are �=2

unitaries, and �Xi, �Yi denote the corresponding conjugate
gates [in simulations we use the equivalent form with
Yc

�Xc
�Yc � Zc].

To implement the two-qubit zz-rotation gate, e�i�=4�z
c�

z
d ,

we run two period-16�p decoupling sequences on the

sublattices A and B, VAðtÞ and VBðtÞ in Fig. 1, where
each pulse of duration �p is a symmetric � pulse applied

in the x direction. When the pulses are second-order self-
refocusing pulses (e.g., Q1ð�Þ from Refs. [34,46] shown),
these sequences suppress the effect of the Ising couplings
HS and the noise HN to second order in the Magnus
expansion, meaning that the effective Hamiltonian is just
HB, with the error scaling as / �2p. This gives the error in

the unitary matrix scaling as / �3p, and the corresponding

infidelity 1-F scaling as / �6p (we use the average fidelity

F expressed in terms of the unitary evolution matrix, see
Appendix of Ref. [46]).
To turn on the coupling between two neighboring qubits

c, d, the two sublattice sequences on these qubits are
replaced with VCðtÞ and VDðtÞ, respectively, see Fig. 1.
These sequences are chosen so that the Ising coupling
between these qubits is only removed half of the time,
while the coupling to other qubits continues to be removed.
More precisely, with second-order pulses, the effective
Hamiltonian is HB þ ðJ=4Þ�z

c�
z
d þOð�2pÞ. Repeating this

sequence m times gives the system evolution

Uzz ¼ expð�i��z
c�

z
dÞ; � ¼ 4mJ�p; (5)

with the error scaling as / m�3p, where the term associated

with the bath evolution is suppressed. Such sequences can
be run simultaneously on many pairs of qubits as long as
qubits from different pairs are not mutually coupled.
We implement single-qubit rotations with the leading-

order dynamically corrected gates (DCGs) [38,49], using
the pulse sequences in Fig. 2. Again, two decoupling sequen-
ces, V1ðtÞ and V2ðtÞ, are run globally on the two sublattices;
additional pulses are inserted for the qubits to be rotated
[V3ðtÞ in Fig. 2 shows an implementation of the�=2 rotation
with respect toY axis on a sublattice-A qubit]. TheHadamard
gates are implemented using these single qubit rotations and

the identity UH ¼ e�i�=2 expði �4 �yÞ expði �2 �xÞ.
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FIG. 1 (color online). Pulse sequences used to implement two-
qubit zz rotations on a bipartite lattice with Ising couplings.
Global sequences of � pulses in the x direction, VAðtÞ and VBðtÞ,
are executed on the idle qubits of the two sublattices. These
decouple the interqubit Ising couplings and also the single-qubit
low-frequency phase noise terms. In order to couple two neigh-
boring qubits, the sequences VA, VB are respectively replaced
by VC, VD on these qubits. This produces an effective Ising
Hamiltonian with half of the original coupling. Shown are Q1ð�Þ
second-order self-refocusing pulse shapes [34,46] used in the
simulations.
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Nominally, DCGs guarantee first-order decoupling with
any pulse shape. However, in our case, the decoupling
sequences ViðtÞ, i ¼ 1, 2, do not go over the complete
single-qubit groups. Thus, unoptimized (e.g., Gaussian)
pulses can produce unitary errors scaling linearly with
the pulse duration �p; one needs first-order self-refocusing

pulses [34,45,46] to get first-order decoupling. In the case
of the second-order pulses (e.g., Q1ð�Þ [46]), the remain-
ing order-�2p errors are all proportional to different com-

mutators [Bi, Bj] and [HB, Bi], which gives second-order

decoupling (infidelity / �6p) when the operators Bi are

replaced by c numbers �i (cf. chemical shifts in NMR).
These predictions are confirmed in Fig. 3 which shows

the average infidelities for a single ð�=2ÞY rotation of qubit
3 [Fig. 3(a)] and a complete CNOT23 gate [Fig. 3(b)] as a
function of the rms chemical shift � (in units of ��1

p ),

obtained numerically for a four-qubit Ising chain. The
simulations are done with a custom C++ program using
fourth-order Runge-Kutta algorithm for integrating the
unitary dynamics and the Eigen3 library [53] for matrix
arithmetics. We fix the value of Jij ¼ J ¼ �=ð16m�pÞwith
m ¼ 5 repetitions of the basic sequence [see Eqs. (4) and
(5) and Fig. 1] in the CNOT gate; with the addition of
four single-qubit DCGs [see Fig. 2] the CNOT duration is
tCNOT ¼ 9� 16�p ¼ 144�p. For small �, the infidelities

are dominated by the decoupling accuracy of the interqubit
interactions, while they scale as/ �6�6p for large�, see the

graphs of the corresponding slopes in the insets.
We illustrate the performance of the designed gates by

simulating the quantum Zeno effect [43,44] using the four-
qubit toric error-detecting code [10,54]. We used zero-mean
classical stationary Gaussian stochastic processes with

Gaussian correlations, hBiðtÞBjðt0Þi¼�2�ije
�ðt�t0Þ2=�2c , as

the source of decoherence. These are obtained by applying

the Gaussian filter to discrete sets of uncorrelated random
numbers drawn from theGaussian distribution, and using the
standard cubic spline interpolation with the result.
The [[4, 2, 2]] toric code is a stabilizer code [55,56]

encoding an arbitrary state of k ¼ 2 qubits into a
22-dimensional subspace Q of the 4-qubit Hilbert space.
The subspace Q is the common þ1 eigenspace of the two
stabilizer generators,Gx¼�x

1�
x
2�

x
3�

x
4 andGz¼�z

1�
z
2�

z
3�

z
4.

We use the following explicit map (up to normalization) for
the logical qubits

j~0~0i¼ j0000iþ j1111i; j~0~1i¼ j0011iþ j1100i;
j~1~0i¼ j0101iþ j1010i; j~1~1i¼ j0110iþ j1001i: (6)

An application of any single-qubit error, i.e., a Pauli operator
��

i , � ¼ x, y, z, takes the encoded wave function to one
of the three orthogonal subspaces, where one or both of the
eigenvalues of Gx, Gz (these eigenvalues form the error
syndrome) equal �1. The code has distance d ¼ 2 since
some two-qubit errors, e.g.,�z

1�
z
2, act within the code space

and cannot be detected.
In the presence of the error Hamiltonian (3), to leading

order in the perturbation, the original wave function c 0

evolves into a superposition of orthogonal terms A0jc 0i þ
A�
i �

�
i jc 0i. In general, the coefficients A0, Ai are operators

acting on the bath degrees of freedom and the state’s

fidelity is given by F � TrBðAy
0A0�BÞ, where the trace is

taken over the bath degrees of freedom with the density
matrix �B. With the same accuracy, F is also the probabil-
ity that the measurement returns Gx ¼ Gz ¼ 1. For weak
perturbation, and for times, t, that are small compared to
the bath correlation time �c, the infidelity 1� F scales
quadratically with t. Thus frequent projective measure-
ments of the generators ensure preservation of the wave
function with high probability—the quantum Zeno effect
[43,44]. At higher orders, there will be errors spanning
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FIG. 2 (color online). Pulse sequence used to implement
single-qubit rotations. The sequences of � pulses in the x
direction, V1ðtÞ and V2ðtÞ, are executed globally on idle qubits
of the two sublattices. A single-qubit rotation is implemented as
a DCG by adding three pulse-antipulse combinations and the
stretched pulse in the shaded regions (y axis). The sequence
V3ðtÞ, where pulses in the shaded regions are Q1ð�=2Þ, corre-
sponds to a ð�=2ÞY operation on a sublattice-A qubit. Such gates
can be executed on any set of non-neighboring qubits.
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FIG. 3 (color online). (a) The infidelity of the gate in Fig. 2 and
(b) the infidelity of the complete CNOT gate between qubits 2 and
3 of a four-qubit NN Ising chain as a function of rms chemical
shift � (pulse sequences not shown). For small � the errors
saturate because of the fixed J; when � is large, chemical shifts
dominate the errors. The insets show the corresponding slopes;
the slope of �6 [infidelity / ð�p�Þ6] indicates that the on-site

chemical shifts are decoupled to quadratic order. Analogous
calculations with first-order pulses [34,46] S1ð�Þ and S1ð�=2Þ
give first-order [infidelity / ð�p�Þ4] decoupling and 2 orders of

magnitude higher infidelities (not shown); Gaussian pulses in-
crease infidelities by up to 5 orders of magnitude.
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multiple qubits which may decrease the fidelity even when
the circuit is formally successful (i.e., measurements yield
Gx ¼ Gz ¼ 1, see Figs. 6 and 7).

Using the constructed DD gates, we simulated the
decoding and encoding and ancilla-based stabilizer mea-
surement circuits (Figs. 4 and 5), where we use standard
quantum circuit notations [56,57]. A projective single-
qubit measurement is implemented simply as an instanta-
neous projection to the j0i state of the ancilla.

Samples of the simulation results are shown in Figs. 6
and 7 with the time axis starting at the end of the encoding
(see Fig. 4). They show the time-dependence of average
infidelities (which assume that each syndrome measure-
ment returns the original ‘‘correct’’ value, Gx ¼ Gz ¼ 1;
only such results are preserved), and the accumulated
circuit success probability (fraction of preserved data
sets). These results are averaged over 20 instances of
classical correlated noise and with the syndrome measure-
ments alternating between Gx and Gz.

It is clear that the dynamical decoupling and the Zeno
effect are both contributing to improving the fidelity, and
both get better with decreasing noise. This indicates that
the errors contributing to the infidelity of the constructed
gates are not dominated by high-weight errors which
would be undetectable by the code [58].

The infidelity sharply increases with shorter noise cor-
relation times; this results from the asymmetry of the
DCGs, see Fig. 2. We have also constructed [58] symme-
trized DCGs which give second-order decoupling for arbi-
trary bath operators Bi when used with the pulses
constructed in Ref. [47]; we expect such gates to have a
much better accuracy for smaller noise correlation time,
down to the gate duration, �c � 32�p.

In conclusion, we implemented a universal set of one- and
two-qubit gates for a system with always-on qubit coupling.
The gates are based on DD techniques and have an added
benefit of protection against low-frequency phase noise.
One application of these constructed gates is for imple-

menting toric codes on a square lattice, where one sublattice
would be used for actual qubits, and the other sublattice for
ancillas. This way, measurement of the entire syndrome can
be done in just two cycles, each of four CNOTS in duration,
plus some single-qubit gates. The same sequences would
also work for an arbitrary quantum low-density parity check
code, if the couplings between the qubits and the ancillas
form the corresponding Tanner graph [59]. In particular, for

FIG. 4. Encoding circuit for the [[4, 2, 2]] code implemented
on a spin chain using four exchange gates (each implemented
with three CNOTS), five CNOT gates, and a Hadamard gate H.
Input qubits i1, i2 can be in an arbitrary two-qubit state, on the
output the circuit returns an equivalent linear combination of the
states in the code, see Eq. (6), using qubits sj, j ¼ 1; . . . ; 4, and

an ancilla initialized for the stabilizer measurement circuit in
Fig. 5. The decoding is done by reversing this circuit.

FIG. 5. Measurement circuit for the [[4, 2, 2]] code on a spin
chain with a shuttling ancilla. The ancilla is first shuttled up for
the Gz measurement and then shuttled down for the Gx mea-
surement. The entire circuit is repeated for every Zeno cycle.
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FIG. 6 (color online). Infidelities during the Zeno cycle for
different noise correlation times but with the same noise ampli-
tude � ¼ 10�3=�p. The different curves correspond to cases

where no pulses are applied (NP), DD pulses are applied but no
measurements are made (NM), and with the syndrome measure-
ments (WM). Closed and open symbols respectively represent
the infidelities during the syndrome measurements and at the end
of the final decoding. Note that the axis for the cumulative
success probability (SP) is on the right.
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FIG. 7 (color online). Same as Fig. 6 but with fixed noise
correlation time �c ¼ 128�p with the rms noise amplitudes �

as indicated.
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hypergraph-product and related codes [41,42] one can use
the square lattice layout with additional connections [60].
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