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A detailed analysis of the process of two-photon emission by an electron scattered from a high-intensity

laser pulse is presented. The calculations are performed in the framework of strong-field QED and include

exactly the presence of the laser field described as a plane wave. We investigate the full nonlinear quantum

regime of interaction with a few-cycle pulse, where nonlinear effects in the laser field amplitude, photon

recoil, and the short pulse duration substantially alter the emitted photon spectra as compared to those in

previously studied regimes. We provide a semiclassical explanation for such differences, based on the

possibility of assigning a trajectory to the electron in the laser field before and after each quantum photon

emission. Our numerical results indicate the feasibility of investigating experimentally the full ultrarela-

tivistic quantum regime of nonlinear double Compton scattering with available electron accelerator and

laser technology.
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Electromagnetic radiation by accelerated charged
particles is one of the most fundamental processes in
physics, and it is exploited experimentally for different
purposes ranging from the generation of coherent x rays
[1] to the production of multi-GeV photon beams [2]
and medical applications. It is also a useful tool for
investigating fundamental physics and, for example, it
has played a crucial role for testing the validity of the
high-energy sector of QED [3]. In classical electrodynam-
ics, a charge, an electron for definiteness (mass m and
charge e < 0, respectively), radiates only if it is acceler-
ated. Analogously, quantummechanically photon emission
can occur only if the electron absorbs at least one photon.
When an electron is driven by an intense electromagnetic
field, the emission of photons may occur with the absorp-
tion of many photons from the field.

High-power lasers are irreplaceable tools to test the
high-intensity sector of QED, as complementary to the
high-energy one [4]. The effects of a laser field approxi-
mated as a plane wave have to be taken into account
exactly if � ¼ jejE0=mc!0 * 1, where E0 is the electric
field amplitude of the field and !0 its central angular
frequency. The threshold � � 1 corresponds to an optical
(@!0 � 1 eV) laser intensity of about 1018 W=cm2

whereas available ones exceed already 1022 W=cm2 [5].
The emission of a single photon by an electron in a plane
wave [nonlinear single Compton scattering (NSCS)] has
been thoroughly investigated theoretically (see the recent
review [4]) and the QED predictions at � & 1 have been
confirmed experimentally [6]. Recent studies on NSCS
have been focused on finite-pulse effects and especially
on the high-intensity regime � � 1, where a large number
(� �3) of laser photons is absorbed by the electron during
the emission process [7–11]. In addition to �, NSCS is
characterized by the parameter � ¼ ððk0piÞ=m!0Þ�
ðE0=EcrÞ, where k�0 ¼ ð!0=c;k0Þ is the four-wave-vector

of the laser photons (jk0j ¼ !0=c), p
�
i ¼ ð"i=c;piÞ is the

initial electron four-momentum, and Ecr ¼ m2c3=@jej ¼
1:3� 1016 V=cm [4]. The parameter � controls quantum
effects like the photon recoil, and at � � 1 the NSCS
spectra coincide with the classical ones [12]. The emission
of two photons by an electron in a plane wave [nonlinear
double Compton scattering (NDCS)] allows for studying
correlation effects in the emitted radiation, and it has also
been investigated with an emphasis on the entanglement of
the two emitted photons [13] and on the relative yield
between NSCS and NDCS [14]. Both these studies have
been focused on the radiation regime where �� 1, such
that the electron absorbs only a few photons from the laser
field (‘‘quasilinear’’ regime) [4], and where � � 1, such
that quantum photon recoil was negligible. At �� 1 the
condition for the importance of recoil is essentially
@ðk0piÞ=m2c2 � 1 (see Ref. [15]), as in the linear regime,
i.e., in double Compton scattering by a gamma photon,
which was already measured [16].
In the present Letter we investigate NDCS in a few-cycle

laser pulse in the full ultrarelativistic quantum regime
� � 1, � * 1 including exactly the effects of the plane
wave. As a result of the localized nature of photon emis-
sion, of highly nonlinear effects in the laser amplitude, of
photon recoil, and of the short pulse duration, the physics
of NDCS and the emission spectra here substantially differ
from those in the quasilinear regime (�� 1) at � � 1
studied in Refs. [13,14] for a monochromatic and in detail
for a many-cycle plane wave, respectively [17]. We explain
the new features of the emission spectra by developing a
quasiclassical approach, where a trajectory is assigned to
the electron in the laser field, with discontinuities in the
electron energy due to the quantum emission of photons.
Finally, we show numerically that the studied regime can
be entered already with experimentally demonstrated laser
intensities of the order of 1021 W=cm2 [5], together with
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high-energy electron beams generated by either available
conventional accelerators [18] or present-generation laser-
based accelerators [19].

We consider a linearly polarized plane-wave field
described by the four-potential A�

0 ð�Þ¼ ðE0=!0Þ��0 c ð�Þ,
where ��0 is the wave’s polarization four-vector and the

shape function c ð�Þ depends on the space-time coordi-
nates x� only via the invariant phase � ¼ ðk0xÞ (units with
@ ¼ c ¼ 1 are used throughout). For a generic four-vector
a� ¼ ða0;aÞ we introduce the light-cone representation

a� ¼ ðaþ; a�;a?Þ, where a� ¼ ða0 � akÞ= ffiffiffi

2
p

, with ak ¼
k0 � a=!0, and where a? ¼ a� akk0=!0. In the Furry
picture of QED, the electron wave functions in the pres-
ence of a plane-wave field are the so-called Volkov wave
functions [20]. The Volkov wave function for an electron
with four-momentum p� and spin quantum number �

outside the plane wave has the form �p;�ðxÞ ¼
EpðxÞup;�=

ffiffiffiffiffiffi

2"
p

, where up;� is a free bispinor, a unity

quantization volume is assumed, and the Ritus matrices

EpðxÞ ¼
�

1þ e6k0 6A0ð�Þ
2ðk0pÞ

�

� e�ifðpxÞþ
R

�

0
d�ðfe½pA0ð�Þ	=ðk0pÞg�½e2A2

0
ð�Þ=2ðk0pÞ	Þg (1)

have been introduced, with a ¼ ��a� for the Dirac

matrices ��. We consider an electron with initial (final)
four-momentum p

�
i ¼ ð"i;piÞ (p

�
f ¼ ð"f;pfÞ) and spin

quantum number �i (�f), which emits two photons with

four-momenta k
�
1 and k

�
2 and with polarization four-

vectors ��k1;	1
and ��k2;	2

, respectively. The scattering matrix

element Sfi of this process can be written as Sð1Þfi þ Sð2Þfi ,

where (see Fig. 1)

Sð1Þfi ¼ �e2
Z

d4xd4y ��pf;�f
ðyÞ�
k2;	2

eiðk2yÞ

�Gðy; xÞ�
k1;	1
eiðk1xÞ�pi;�i

ðxÞ (2)

and Sð2Þfi ¼ Sð1Þfi ð1 $ 2Þ. In Eq. (2) ��p;�ðxÞ ¼ �y
p;�ðxÞ�0,

and

Gðy; xÞ ¼ lim
�!0

Z d4p

ð2
Þ4 EpðyÞ 6pþm

p2 �m2 þ i�
�EpðxÞ (3)

with �EpðxÞ ¼ �0Ey
pðxÞ�0 is the Volkov propagator [15].

We analyze here only the quantity Sð1Þfi . The structure of the

Ritus matrices allows us to perform the integrations in xþ

and x? (yþ and y?), which provide the energy-momentum
conservation laws p?

i ¼ k?1 þ p? and p�
i ¼ k�1 þ p�

(p? ¼ k?2 þ p?
f and p� ¼ k�2 þ p�

f ). One of these sets

of conservation laws can be employed to perform three
integrations in Gðy; xÞ. The only remaining integral in
Eq. (3) is

Iðy�; x�Þ ¼ lim
�!0

Z dpþ

2


6pþm

pþ � pþ
t þ i�

eip
þðx��y�Þ

¼ 6n0�ðx� � y�Þ � ið6pt þmÞ�ðy� � x�Þ; (4)

where n�0 ¼ k�0 =!0, �ð�Þ is the step function and where

the four-momentum p�
t has light-cone coordinates p�

t ¼
p�
i � k�1 ¼ k�2 þ p�

f , p?
t ¼ p?

i � k?1 ¼ k?2 þ p?
f , and

pþ
t ¼ ðp?2

t þm2Þ=2p�
t (note that p2

t ¼ m2). The above

decomposition allows us to write the quantity Sð1Þfi as S
ð1Þ
fi ¼

ð2
Þ3�ðp�
i � k�1 � k�2 �p�

f Þ�ð2Þðp?
i � k?1 � k?2 �p?

f Þ�
P

2
r;s¼0ðarfr�r;s þ br;sfr;sÞ, where the coefficients ar and

br;s are matrix factors whose exact form is not needed here.

In fact, all the dynamical information on the process is
contained in the functions

fr ¼
Z

d�c rð�Þ expf�i½Sxð�Þ þ Syð�Þ	g; (5a)

fr;s ¼
Z

d�xd�y�ð�y � �xÞc sð�xÞc rð�yÞ
� expf�i½Sxð�xÞ þ Syð�yÞ	g; (5b)

where Sx=yð�Þ¼
R�
0 d�

0½�x=yc ð�0Þþx=yc
2ð�0Þþ�x=y	,

with �x ¼ �m�½ðpi�0Þ=ðk0piÞ � ðpt�0Þ=ðk0ptÞ	, x ¼
�m2�2ðk0k1Þ=2ðk0ptÞðk0piÞ, �x ¼ �ðk1piÞ=ðk0ptÞ,
and with �y, y, and �y obtained from �x, x, and �x,

respectively, with the substitutions p�
t ! p�

f , p
�
i ! p�

t ,

and k
�
1 ! k

�
2 . We call ‘‘coherent’’ (‘‘incoherent’’) the

contributions to the amplitude Sð1Þfi containing the functions

fr (fr;s). The divergences in the integrals, which do not

contain the shape function c ð�Þ in the prefactor, can be
avoided by employing the identities [8,14,21] �yf0;s ¼
�ifs � ð�yf1;s þ yf2;sÞ, �xfr;0 ¼ ifr � ð�xfr;1 þ
xfr;2Þ, and ð�x þ �yÞf0 ¼ �ð�x þ �yÞf1 � ðx þ
yÞf2. The differential average energy emitted dE,

summed (averaged) over all outgoing (incoming) discrete
quantum numbers is given by

dE¼!1þ!2

2

d3pf

ð2
Þ3
Y

2

i¼1

d3ki
ð2
Þ3

X

f�;	g
jSð1Þfi þSð2Þfi j2; (6)

where f�; 	g � �i, �f, 	1, 	2. Note that the three �

functions contained in Sð1Þfi [and in Sð2Þfi ] can be exploited

to perform the integrations in pf.

We consider a few-cycle laser pulse propagating along
the positive z axis polarized along the x direction, and an
electron initially counterpropagating with respect to the
laser beam, i.e., pi ¼ ð0; 0;�i"iÞ with i > 0. The shape

FIG. 1. Tree-level Feynman diagrams of NDCS in the Furry
picture. The double solid lines represent Volkov states and
propagators.
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function is c ð�Þ ¼ sin4ð�=4Þ sinð�Þ for � 2 ½0; 4
	
and zero elsewhere, corresponding to a two-cycle
pulse of approximately 5-fs duration at !0 ¼ 1:55 eV.
We first consider a laser system with peak intensity
I0 ¼ 5� 1020 W=cm2 (� � 15). In this regime the elec-
tron absorbs about �3 � 3000 laser photons during each
emission process [8,15], indicating a highly nonlinear
dependence of the process itself on the laser amplitude.

In order to highlight qualitative differences between the
full quantum regime �� 1 considered here and the
already-studied regime at � � 1, we first report on a
numerical example within the latter. Thus, we set
"i ¼ 40 MeV, which corresponds to � ¼ 5� 10�3. We
choose to observe one photon at �1 ¼ 
� �0=2 with
�0 ¼ m�="i, and the other one at the two different polar
angles �2 ¼ �1 [see Fig. 2(a)] and �2 ¼ 
� 1:1�0
[see Fig. 2(b)]. Also, we choose �1 ¼ 
, �2 ¼ 0 in both
cases as azimuthal observation angles. For our pulse shape
c ð�Þ, (1) the emission cone of NSCS is determined by the
condition 
� � � c 0�0 on the polar angle � with
c 0 ¼ jmaxðc ð�ÞÞj ¼ 0:8 [22], and (2) the NSCS
emission spectra at (�,� ¼ 0) and at (�,� ¼ 
) coincide.
Therefore, if �2 ¼ �1 both photons are observed within

the emission cone of NSCS, whereas if �2 ¼ 
� 1:1�0
one of the photons is observed outside this cone.
A comparison of Figs. 2(a) and 2(b) shows that the

radiation outside the NSCS emission cone is negligibly
small relative to that within this cone. This feature can be
quantitatively understood by virtue of a stationary-phase
analysis [8,15]. In fact, at m�, "i � m the phases in the
integrands in Eq. (5a) and (5b) are of the order of �3 � 1
[8,15], and the saddle-point method can be applied. In the
NSCS analysis of an electron with initial momentum pi

emitting a photon with wave vector k, for � � 1 the saddle
points ��l are almost real (jImð ��lÞ=Reð ��lÞj � 1=�) and
Reð ��lÞ corresponds to those phase instants where the clas-
sical electron momentum points along k [8]. Accordingly,
the overall emission cone corresponds to the angular region
covered by the electron’s classical velocity vector along its
complete classical trajectory in the laser pulse. Thus, the
electron propagation in the laser field is quasiclassical and
the photon recoil is themain quantum effect to be accounted
for Ref. [23]. Now, we have checked numerically that the
NDCS spectrum is dominated by the contribution propor-
tional to the functions fr;s. These integrals, according to

the saddle-point method, can be approximated as fr;s �
P

l;n�ð ��y;n � ��x;lÞfyr ð ��y;nÞfxs ð ��x;lÞ. Here, the indices l and
n run over all stationary points, which are found as solutions

of the equations dSx=yð�Þ=d�j�¼ ��x;l=y;n
¼ 0 and fx=yr ¼

R

d�c rð�Þ exp½�iSx=yð�Þ	 [see Eq. (5b)]. The above-

approximated expression of fr;s can be interpreted as a

two-step emission process in which the electron first emits
a photon with four-momentum k

�
1 changing its own four-

momentum from p�
i to p�

t , and then it emits a photon with

four-momentum k
�
2 changing its own four-momentum from

p
�
t top

�
f (recall that the total amplitude also contains a term

with the photon indices 1 and 2 exchanged). One can picture
this dynamics by considering a succession of two classical
trajectories with initial four-momenta p�

i and p�
t , respec-

tively, continuously joined at a point corresponding to the
phase ��x;l, where the photon with four-momentum k�1 is

emitted. In Fig. 2(d) we show in principle a pair of such
classical electron trajectories joined at the point marked
with a cross and labeled as ��x;1, where the electron prop-

agates along the observation direction (�1, �1). However,
since in the regime � � 1 the recoil is negligible
[see Figs. 2(a) and 2(c) and recall that "i ¼ 40 MeV], the
two four-momenta p

�
i and p

�
t are practically identical and

the two trajectories are indistinguishable [in Fig. 2(d) we
subtracted the momentum of a typical photon of energy
!1 ¼ 105 eV emitted towards (�1, �1) from the initial
electron momentum, see Figs. 2(a) and 2(c)]. The same
occurs if the two trajectories are joined at the other saddle
point ��x;2 [see Fig. 2(d)], where the electron’s velocity is

again along the observation direction (�1,�1). Analytically,
by inserting the parameters �x and x (�y and y), the

stationary-point equation at the vertex x (y) provides

FIG. 2 (color online). Two-photon energy emission spectra
dE=�2

i¼1d!id�i½eV�1 sr�2	 at � ¼ 5� 10�3 observed at �1 ¼

� �0=2, and at �2 ¼ �1 (a) and at �2 ¼ 
� 1:1�0 (b), with
�0 ¼ 0:19 rad. The other numerical parameters are given in the
text. (c): NSCS emission probability dWNSCS=d!d�½eV�1 sr�1	
at (�1,�1). (d): Classical electron trajectories (the instantaneous
electron energy is color encoded) with initial four-momenta p

�
i

and p
�
t joined at ��x;1. Since as a typical photon emission energy,

the value 105 eV has been chosen [see (a) and (c)], then p�
i �

p�
t and the two trajectories are indistinguishable. "max is the

maximum electron energy in the laser field. The crosses mark the
points of the trajectory where the classical electron’s velocity is
along (�1, �1).
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c ð ��xÞ ¼ �1=2 (c ð ��yÞ ¼ �#2 � ð!1="iÞð1=2þ�#2Þ,
with �#2 ¼ ð
� �2Þ=�0). If photon recoil is negligible
(!1 � "i), the condition for ��y has a real solution only if

�#2 < c 0, i.e., only if �2 lies within the NSCS emission
cone. This explains the negligible emission outside this
cone in Fig. 2(b).

Also, by comparing the frequency distribution of the
NDCS emission spectrum in Fig. 2(a) with the NSCS
emission probability dWNSCS=d!d� [7–9] in Fig. 2(c), it
is apparent that the NDCS spectrum for � � 1 (and ��1)
corresponds to an emission probability given by the
‘‘product’’ of two independent NSCS probability distribu-
tions for each photon [the maximum in the probability in
Fig. 2(c) is at lower energies than in the NDCS emission
spectrum in Fig. 2(a), as the latter contains an additional
factor !1 þ!2]. While the formation length ‘ of NSCS in
a few-cycle pulse at �� 1 [13,14] is of the order of the
laser’s pulse length, at � � 1 it is even much smaller than
the laser’s central wavelength 	0 ¼ 2
=!0, as it holds
‘� 	0=� [4]. Thus, for � � 1 each photon emission is
well localized and, if recoil effects can be neglected, the
two-photon emission process can essentially be described
by two independent NSCS events [24]. Accordingly, we
checked that if WNDCS (WNSCS) is the total NDCS (NSCS)
emission probability, then WNDCS � ðWNSCSÞ2=2 [24].

Finally, the positions of the spectral peaks in Fig. 2(a)
significantly differ from those in a many-cycle pulse [14],
which essentially correspond to the so-called Oleinik
resonances rigorously occurring only in a monochromatic
wave [13]. For example, the first emission peak here is at
about 10 keV [see Fig. 2(c)], whereas the first Oleinik
resonance would be at about 215 eV.

The physical situation, however, changes substantially
if we enter the full quantum regime at �� 1. In order
to investigate this regime, we set "i ¼ 2:5 GeV [25], and
I0 ¼ 3� 1021 W=cm2, resulting in � ¼ 1:1, and keep all
other parameters unchanged with respect to the above
example. Here, � � 37 and the electron absorbs about
�3 � 5� 104 laser photons during each emission process.
By observing the two emitted photons at the same emission
angles as before [see Figs. 3(a) and 3(b)], we note that
(1) the quantum mechanical cutoff energy for the sum of
the emitted photons’ energies, approximately given by
the equation !1 þ!2 ¼ "i, is well approached, (2) since
in the quantum regime the electron loses a substantial part
of its energy after the emission of the first photon, the
asymmetry in the energies of the two emitted photons
[see Fig. 3(a)] is much more pronounced than at
��1 [see Fig. 2(a)], and (3) the electron also emits outside
of the NSCS emission cone [see Fig. 3(b) and note that
�0¼7:6�10�3 rad for the present numerical parameters].

The third feature is particularly important as it allows us
to measure NDCS in the full ultrarelativistic quantum
regime. To explain it qualitatively, we show in Fig. 3(c)
the classical trajectories for initial momenta pi (solid line)

and pt (dashed line) obtained for the emission of a photon
of energy!1 ¼ 0:8 GeV and momentum along (�1, �1) at
��x;1 (the analysis in the case in which the electron emits at

��x;2 is analogous). At this value of !1 the emission proba-

bility is maximal. The derivatives of the two trajectories
coincide at ��x;1 [see Fig. 3(c)], as the photon is assumed to

be emitted with momentum parallel to the instantaneous
electron’s velocity. However, the color coding shows that
the electron energy discontinuously decreases at ��x;1 due

to photon recoil. The abrupt energy decrease induces
a stronger deflection of the electron trajectory in the
laser field after the photon emission. Thus, the resulting
emission cone’s opening angle increases, and the emission
outside of the NSCS emission cone becomes possible.
The same conclusion can be drawn analytically, evaluating
the saddle-point equation c ð ��yÞ ¼ �#2 � ð!1="iÞð1=2þ
�#2Þ � c 0, with �#2 ¼ ð
� �2Þ=�0. Solving the latter
inequality for �2, we obtain an expression for the cutoff
angles of the second photon emission as a function of !1

[see Fig. 3(d) with�2 ¼ 0mapped to �2 >
 and �2 ¼ 

mapped to �2 <
]. The photon-energy threshold !


1,

beyond which emission along �2 ¼ 
þ 1:1�0 becomes

FIG. 3 (color online). Two-photon energy emission spectra
dE=�2

i¼1d!id�i½eV�1sr�2	 at � � 1:1 observed at �1 ¼ 
�
�0=2, and at �2 ¼ �1 (a) and at �2 ¼ 
� 1:1�0 (b), with
�0 ¼ 7:6� 10�3 rad. The other numerical parameters are given
in the text. The solid white lines correspond to the cutoff-energy
equation !1 þ!2 ¼ "i. (c): The two classical electron trajecto-
ries with initial electron momentum pi (solid line) and pt

(dashed line). The color-encoded line shows the actual electron
trajectory for a photon with energy !1 ¼ 0:8 GeV and momen-
tum along (�1, �1) emitted at ��x;1. (d): Emission opening angle

for the second emitted photon as a function of !1 (light shaded
area) compared with the emission cone for NSCS with initial
electron momentum pi (dark stripes). The vertical line indicates
the value !1 ¼ !


1 described in the text.
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possible [see Fig. 3(b)], is well reproduced by this analyti-
cal prediction [see Fig. 3(d)]. Thus, measuring MeV pho-
tons outside of the NSCS emission cone would reveal a
NDCS signal, where NSCS is exponentially suppressed
and negligible. The emission probability outside of the
NSCS emission cone results to be of the order of 0.1,
indicating the observability in principle of the process
employing laser-generated electron beams, which typically
contain �108 electrons [19]. In order to resolve detailed
spectral signatures of the photon spectra, however, electron
beams with much smaller normalized emittance and rela-
tive energy spread, such as available at conventional ac-
celerators [18], are required [26]. In general, it is not
possible experimentally to separate the coherent contribu-
tion to the amplitude from the incoherent one. However,
we have checked numerically that in the above example the
coherent contribution is negligibly small. Finally, NSCS
and NDCS photons may create electron-positron pairs,
which in turn would generate a radiation background
for NDCS itself. However, Figs. 3(a) and 3(b) and analo-
gous results for NSCS spectra indicate that photons
are produced here with energy ! & 1:5 GeV, and this
background radiation is suppressed by a factor
expð�8"i=3!�Þ & 10�2 [4].

The authors acknowledge useful discussions with A.
Ilderton, D. Seipt, and B. Kämpfer.
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Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder,
and S.M. Hooker, Nat. Phys. 2, 696 (2006); C. E. Clayton
et al., Phys. Rev. Lett. 105, 105003 (2010).

[20] V. B. Berstetskii, E.M. Lifshitz, and L. P. Pitaevskii,
Quantum Electrodynamics (Elsevier, Oxford, 1982).

[21] A. Ilderton, Phys. Rev. Lett. 106, 020404 (2011).
[22] F. Mackenroth, A. Di Piazza, and C.H. Keitel, Phys. Rev.

Lett. 105, 063903 (2010).
[23] V. N. Baier, V.M. Katkov, and V.M. Strakhovenko,

Electromagnetic Processes at High Energies in Oriented
Single Crystals (World Scientific, Singapore, 1998).

[24] R. J. Glauber, Phys. Rev. 84, 395 (1951).
[25] S. Y. Kalmykov et al., High Energy Density Phys. 6, 200

(2010).
[26] F. V. Hartemann, D. J. Gibson, W. J. Brown, A. Rousse, K.

Ta Phuoc, V. Mallka, J. Faure, and A. Pukhov, Phys. Rev.
ST Accel. Beams 10, 011301 (2007).

PRL 110, 070402 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 FEBRUARY 2013

070402-5

http://dx.doi.org/10.1088/0953-4075/42/13/130201
http://dx.doi.org/10.1088/0953-4075/42/13/130201
http://dx.doi.org/10.1016/j.nimb.2005.02.010
http://dx.doi.org/10.1016/j.nimb.2005.02.010
http://dx.doi.org/10.1016/j.physletb.2005.04.054
http://dx.doi.org/10.1103/RevModPhys.84.1177
http://dx.doi.org/10.1364/OE.16.002109
http://dx.doi.org/10.1103/PhysRevLett.76.3116
http://dx.doi.org/10.1103/PhysRevD.60.092004
http://dx.doi.org/10.1103/PhysRevA.80.053403
http://dx.doi.org/10.1103/PhysRevA.80.053403
http://dx.doi.org/10.1103/PhysRevA.83.032106
http://dx.doi.org/10.1103/PhysRevA.83.032106
http://dx.doi.org/10.1103/PhysRevA.83.022101
http://dx.doi.org/10.1103/PhysRevA.83.022101
http://dx.doi.org/10.1103/PhysRevA.85.062102
http://dx.doi.org/10.1103/PhysRevA.85.062102
http://dx.doi.org/10.1103/PhysRevLett.109.100402
http://dx.doi.org/10.1103/PhysRevLett.109.100402
http://dx.doi.org/10.1103/PhysRevA.80.053419
http://dx.doi.org/10.1103/PhysRevA.80.053419
http://dx.doi.org/10.1103/PhysRevLett.103.110404
http://dx.doi.org/10.1103/PhysRevD.85.101701
http://dx.doi.org/10.1007/BF01120220
http://dx.doi.org/10.1103/PhysRev.87.1131
http://dx.doi.org/10.1016/j.anucene.2005.11.008
http://dx.doi.org/10.1016/j.anucene.2005.11.008
http://dx.doi.org/10.1038/nphys418
http://dx.doi.org/10.1103/PhysRevLett.105.105003
http://dx.doi.org/10.1103/PhysRevLett.106.020404
http://dx.doi.org/10.1103/PhysRevLett.105.063903
http://dx.doi.org/10.1103/PhysRevLett.105.063903
http://dx.doi.org/10.1103/PhysRev.84.395
http://dx.doi.org/10.1016/j.hedp.2009.11.002
http://dx.doi.org/10.1016/j.hedp.2009.11.002
http://dx.doi.org/10.1103/PhysRevSTAB.10.011301
http://dx.doi.org/10.1103/PhysRevSTAB.10.011301

