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We perform nonequilibrium dynamics simulations of a binary Lennard-Jones mixture in which an

external force is applied on a single tagged particle. For the diffusive properties of this particle parallel to

the force, superdiffusive behavior at intermediate times as well as giant long-time diffusivity is observed.

A quantitative description of this nontrivial behavior is given by a continuous time random walk analysis

of the system in configuration space. We further demonstrate that the same physical properties which are

responsible for the superdiffusivity in nonequilibrium systems also determine the non-Gaussian parameter

in equilibrium systems.
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Introduction.—Because of the distinct multiparticle
dynamics of glass-forming systems, several interesting
properties can be observed, such as the occurrence of
dynamical heterogeneities [1] or the violation of the
Stokes-Einstein relation [2,3]. In the nonequilibrium situ-
ation, the observed phenomena can become even more
complex. Recently, Winter et al. have performed computer
simulations of a tracer particle which is driven by a con-
stant external field through a binary Yukawa fluid [4]. It
was shown that for this microrheological simulation the
diffusive properties of the particle become highly aniso-
tropic: While the mean squared displacement (MSD) of the
tracer particle perpendicular to the force direction hx2?iðtÞ
increases with increasing force but still displays a diffusive
behavior, the centered MSD parallel to the force direction,

�2ðtÞ ¼ hx2kðtÞi � hxkðtÞi2; (1)

displays a superdiffusive behavior at the observed time
range. This result has been rationalized in terms of a
special type of biased trap model [5] in which a super-
diffusive behavior is predicted due to rising fluctuations.
Therefore, it was stated that the diffusion constant for the
parallel direction of the tracer particle does not exist [4].
However, this model has to be regarded with care because
the rising fluctuations would lead to a permanently increas-
ing energy barrier. This scenario is difficult to reconcile
with the observed stationary behavior.

A different approach is used by Jack et al. [6]. Motivated
by the analysis of a one-dimensional spin facilitated model,
they have performed an analytical calculation for a biased
continuous time random walk (CTRW). For this ansatz, a
diffusive regime is predicted for long times. This diffusive
regime is characterized by a strong dependence on the width
of the used waiting-time distribution. Broader waiting time
distributions lead to a dramatic increase of spatial fluctua-
tions, denoted as ‘‘giant diffusivity’’ [7]. Furthermore,
in simulations of similar systems, superdiffusivity can be

observed at intermediate time scales before approaching the
long-time diffusive state [8,9].
The key goal of this Letter is to elucidate the properties

of the superdiffusivity in the driven particle dynamics.
First, we present a formal expression which relates the
superdiffusivity to dynamic heterogeneities in the CTRW
framework. Second, for the trajectories of a glass-forming
model system, we can extract the relevant observables
from an appropriate CTRWanalysis and predict the super-
diffusive behavior in a quantitative way. For the long-time
limit our expression reduces to the giant diffusivity as
calculated in Ref. [6]. Third, we are able to show that the
superdiffusivity has a deep physical connection to the non-
Gaussian parameter (NGP) in equilibrium, thereby estab-
lishing a strong connection between the nonequilibrium
and the equilibrium dynamics of glass-forming systems.
This result is discussed with respect to recent results from
mode-coupling theory [10–13].
Simulations.—We have performed computer simulations

of a binary mixture of Lennard-Jones particles (BMLJ)
[14] which we have extended by applying a constant force
on one randomly selected particle. The system has been
equilibrated under continuous application of the force,
thereby reaching the steady-state regime. Constant tem-
perature conditions are ensured by using a Nosé-Hoover
thermostat [15].
By applying a suitable minimization procedure, it is

possible to track the minima of the potential energy land-
scape, called inherent structures, which the system has
explored during its time evolution. Combining the inherent
structures between which one observes reversible transi-
tions to mesoscopic entities, called metabasin (MB), ena-
bles one to describe the dynamics of small systems
(consisting of 65 particles, denoted as BMLJ65) as discrete
transitions in terms of a CTRW [16–18]. Recently, we have
demonstrated that this concept can also be transferred to
stationary nonequilibrium systems [19] as used throughout
this Letter.
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MB transitions are dynamical events which are charac-
terized by the distribution of particle displacements during
one transition and the distribution of the corresponding
waiting times. In the case of equilibrium [16] as well as
nonequilibrium [19] systems, the waiting time distribution
expands over several orders of magnitude and decays close
to a power law. As shown in Ref. [19] the linear and non-
linear response only shows very small finite size effects.
Here we will also show that the results of this work can be
transferred to the properties of large systems as well.

Results.—Focusing on the diffusive behavior of the
tracer particle parallel to the force direction, our approach
offers two different routes to define the centered MSD: On
the one hand, one can consider the centered MSD after a
certain number of MB transitions n, on the other hand
it can be evaluated after a certain time t. In the following
we will distinguish between these quantities by writing
�2ðnÞ and �2ðtÞ, respectively. Similar to the equilibrium
dynamics [16], �2ðnÞ grows linearly after more than �20
transitions (see Fig. 1). In marked contrast, �2ðtÞ displays a
superdiffusive behavior (see Fig. 2) as it was reported
for the binary Yukawa fluid [4]. From �2ðnÞ one can define
for large n the diffusive length scale a2k via

a2k ¼ lim
n!1

�2ðnÞ
n

; (2)

see also Ref. [19]. To achieve a more quantitative under-
standing and to unravel the surprising qualitative differ-
ences between �2ðnÞ and �2ðtÞ, we have performed an
analytical calculation of �2ðtÞ within the CTRW frame-
work. We start with a one-dimensional CTRW with an
elementary step xi;k ¼ ai;k þ�xk. �xk denotes the aver-

age translation the particle performs along the force direc-
tion during one MB transition. As shown in Ref. [19], �xk
is basically proportional to F in the whole force interval
considered in this work. ai;k is considered to be the remain-

ing translational length with haki ¼ 0. Successive steps are
regarded as uncorrelated so that hai;kaj;ki ¼ �i;jha2ki. The

quantity ha2ki can be identified with the apparent diffusive

length a2k in Eq. (2) and Ref. [19], respectively. For reasons
of consistency we will further denote it as the average
value. Then, the MSD of the particle is given by the sum
over all steps n which were performed up to a time t:

hx2kðtÞi ¼
��XnðtÞ

i¼0

ðai;k þ �xkÞ
�
2
�
: (3)

This yields for the time evolution of the MSD

hx2kðtÞi ¼ hnðtÞiha2ki þ hn2ðtÞi�x2k: (4)

In Eq. (4) hnðtÞi denotes the average number of jumps
the particle performs in a certain time t and hn2ðtÞi the
fluctuation of these, respectively. Considering �2ðtÞ
instead of the MSD, one has to subtract the squared first
moment of the particle displacement, which is given by
hxkðtÞi2 ¼ hnðtÞi2�x2k.
After subtracting this expression from Eq. (4), one

finally obtains

�2ðtÞ ¼ hnðtÞiha2ki þ ½hn2ðtÞi � hnðtÞi2��x2k: (5)

The first term of Eq. (5) can be identified with the one-
dimensional equilibrium diffusive process

2Dkt ¼ ha2ki
t

h�i : (6)

However, due to the fact that our numerical data suggest
a force dependence of both ha2ki (see Fig. 1) and h�i (see
Ref. [19]), the magnitude of Dk also depends on the

applied force. Because the origin is the same as in equi-
librium, we will denote Dk as ‘‘equilibriumlike’’ diffusion

constant, rather than equilibrium diffusion constant. The
superdiffusivity of �2ðtÞ can be related to the latter term
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FIG. 1. Centered MSD �2ðnÞ divided by the number of
transitions n of BMLJ65 at a temperature T ¼ 0:475. The dashed
lines indicate the diffusive lengths a2k [Eq. (2)] parallel to the

force direction.
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FIG. 2. Centered MSD �2ðtÞ divided by time t of BMLJ65 at a
temperature T ¼ 0:475. The dashed lines correspond to the theo-
retical prediction by Eq. (5). The gray bars at intermediate times
indicate the equilibriumlike diffusion [Eq. (6)], and at long times
the long-time diffusion [Eq. (10)] under consideration of the
numerical error. Inset: �2ðtÞ=t of BMLJ65 at T ¼ 0:475, eval-
uated from both MB transitions (points) and real space (lines).
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which is only visible in driven systems. The expression
½hn2ðtÞi � hnðtÞi2� describes the heterogeneity of the num-
ber of occurring jumps in a certain time interval and can be
directly obtained from our trajectories.

For BMLJ65 one is able to perform a complete CTRW
analysis so that each observable in Eq. (5) is directly
accessible. As can be seen in Fig. 2, this ansatz allows us
to quantitatively reproduce the behavior of �2ðtÞ.

The time evolution can be divided into four regimes:
At very short times (t < h�i) one observes a plateau value
which corresponds to the first escape process of the tracer
particle out of its local cage. At h�i< t < 20h�i, �2ðtÞ=t
decays to a second short diffusive regime. This behavior
corresponds to the slight forward-backward correlation of
the particles displacement during subsequent MB transi-
tions (see Fig. 1 and Ref. [16] for further details). The
second diffusive regime is characterized by the equili-
briumlike diffusion constant Dk. It is important to note

that only in the case of small forces (F � 1) this minimum
of �2ðtÞ=t indicates the true value of Dk, while at higher

forces it is already superimposed by superdiffusive contri-
butions. We would like to emphasize that the data which
are shown in Fig. 2 are calculated from aMB trajectory and
therefore exhibit a different behavior at short times as
compared to real space data (see also the inset of Fig. 2).
Indeed, as can be seen in the inset of Fig. 2, the properties
at intermediate and long times are exactly the same. A
more detailed discussion about the different short-time
behavior of the MB trajectories can be found in the
Supplemental Material [20].

At intermediate times (t > 20h�i), one observes a
superdiffusive behavior which is caused by the nonlinear
evolution of [hn2ðtÞi � hnðtÞi2]. At long times, indeed,
there is an indication that the MSD becomes diffusive
again but with a significantly larger diffusion constant.
For this particular long-time behavior one is able to yield
an analytical prediction by the present CTRW ansatz.

The waiting time distribution ’ð�Þ of a single transition
can be characterized by its average value h�i and its
variance V ¼ h�2i � h�i2. Because of the central limit
theorem, the distribution of the cumulated waiting time
�n of a large number of jumps n, Pnð�nÞ, is given by

lim
n!1Pnð�nÞ / exp

�
�ð�n � nh�iÞ2

2Vn

�
: (7)

The corresponding probability to find n jumps in a large
time interval t, PtðnÞ, is directly related to Pnð�nÞ. With the
substitution n ¼ t=h�i in the denominator and identifying
�n ¼ t, we obtain from Eq. (7) the expression

lim
t!1PtðnÞ / exp

�
�ðn� t

h�iÞ2
2V t

h�i3

�
: (8)

Determination of the second moment of PtðnÞ yields

lim
t!1½hn

2ðtÞi � hnðtÞi2� 1
t
¼ V

h�i3 ¼
�h�2i
h�i2 � 1

�
1

h�i ; (9)

and hence, by combining Eqs. (9) and (5), for the long-time
behavior of �2ðtÞ

lim
t!1

�2

t
¼ Dkf ¼ Dk

�
1þ�x2k

ha2ki
�h�2i
h�i2 � 1

��
: (10)

In this equation, f describes the factor which relates the
equilibriumlike and the long-time diffusion constants.
Independent from our derivation, Jack et al. analytically
obtained a similar result for the giant diffusivity by con-
sidering the Montroll-Weiss equation of a biased CTRW
[6]. The long-time diffusion constant Dkf was already

indicated in Fig. 2. For BMLJ65, it is possible to explicitly
compute the long-time diffusivity because of the direct
access to the CTRW observables in Eq. (10). Importantly,
it is also possible to estimate the long-time behavior for
larger system sizes. As shown in the Supplemental
Material [20], the numerically observed degree of super-
diffusivity is fully compatible with the theoretical expec-
tation. Therefore, the present approach suggests that one
always obtains a diffusive behavior for long times.
The presented ansatz allows one to give an explicit

criterion of how long a particle requires to reach the
diffusive regime. It is related to the applicability of the
central limit theorem and thus to the width of the waiting
time distribution: The narrower the waiting time distribu-
tion, the earlier the particle becomes diffusive. Since the
application of a strong microrheological perturbation
causes a narrowing of the waiting time distribution [19],
one expects an earlier advent of the long-time diffusivity at
high forces. This behavior can be qualitatively observed in
Fig. 2 as well.
Besides the MSD of a driven particle, the heterogeneity

of MB transitions can also be observed in equilibrium
systems by analyzing the NGP �2ðtÞ of the one-
dimensional particle displacement which is defined as

�2ðtÞ ¼ hx4ðtÞi � 3hx2ðtÞi2
3hx2ðtÞi2 : (11)

Using the ansatz of an unbiased CTRW, one obtains for
the NGP

�2ðtÞ ¼ ½hn2ðtÞi � hnðtÞi2�
hnðtÞi2 þ

Z
dnPtðnÞAðnÞ: (12)

The latter term describes the non-Gaussianity of the cumu-
lated displacements an after n transitions

AðnÞ ¼ ½ha4ni � 3ha2ni2�
3ha2ni2

(13)

weighted by the probability to find exactly n transitions at a
time t. In what follows we use the approximation thatR
dnPtðnÞAðnÞ � AðhnðtÞiÞ.
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Equation (12) contains two contributions: The first term
includes the heterogeneity of the performed jumps n in a
certain time interval. It is the same quantity that was
observed to be responsible for the superdiffusive behavior
in the nonequilibrium system. Because this term is inde-
pendent of any length scales, one can regard it as a measure
for the temporal heterogeneities of the system dynamics.
The latter term reflects spatial heterogeneities of the ele-
mentary MB transition which become less important at a
larger number of transitions because the distribution of the
cumulated lengths approaches a Gaussian shape. In Fig. 3,
�2ðtÞt is shown at different temperatures together with the
theoretical prediction by Eq. (12). Note that, as it was also
shown by Liao and Chen [21], in the case of transitions
between adjacent MB, �2ðtÞ displays a monotonic decay.
This behavior can be understood by considering that the
initial growth of �2ðtÞ is caused by vibrational parts (short
times) and the �-relaxation process (at intermediate times)
[14,22] while, by construction, MB trajectories only
resolve the �-relaxation process [23]. As one can see, the
theoretical prediction allows one to fully describe the NGP
at each temperature. One further observes that for long
times �2ðtÞt approaches a constant that corresponds to a
decay of �2ðtÞ / 1=t, which is exactly the expectation for
½hn2ðtÞi � hnðtÞi2�=hnðtÞi2 when the central limit theorem
becomes valid [see Eq. (9)].

In the inset of Fig. 3 the different temporal and spatial
contributions to �2ðtÞt are shown. At very short times,
the behavior of �2ðtÞt is mainly determined by AðhnðtÞiÞ,
while above t � 100, the temporal part of Eq. (12) is found
to be the major contribution. At t � 103, one observes
AðhnðtÞiÞ / 1=t, which indicates that the central limit
theorem starts to hold for the distribution of the spatial
displacement. Indeed, for the waiting time distribution the
central limit theorem is only fulfilled on a larger time scale,
so that there is still a growth of �2ðtÞt.

It is known from a comparison between mode-coupling
theory and Brownian dynamics simulations of BMLJ [24]
that mode-coupling theory tends to strongly underestimate
the magnitude of �2ðtÞ in the diffusive regime. This differ-
ence between theory and simulation is also known for the
hard-sphere system [25,26]. More recent results of mode-
coupling theory could show that it is very successful to
predict, e.g., the nonlinear dependence of the mobility on
the applied force in microrheological simulations [10–13].
However, simplified models were not able to reproduce
the superdiffusive behavior of a driven particle along its
force direction [13]. Therefore, it is quite remarkable that
the CTRW approach enables us to relate both the non-
Gaussianity of the equilibrium system and the superdiffu-
sive behavior of the stationary nonequilibrium system to
have the same origin, reflecting the presence of the dy-
namic heterogeneities. One thus might argue whether
mode-coupling theory, possibly due to its dependence on
average quantities [25], is not able to fully describe these
fluctuations. As a consequence, both effects cannot be
qualitatively reproduced.
Summary.—In the this Letter we have demonstrated that

a model of a biased CTRW allows us to fully predict the
anomalous diffusion of a driven particle in a supercooled
medium which is characterized by equilibriumlike diffu-
sion, superdiffusivity, and long-time diffusivity. It was
further shown that the origin of the superdiffusivity results
from temporal fluctuations of the system dynamics which
become visible due the applied bias. Indeed, also in equi-
librium the same fluctuations are present and determine the
evolution of the NGP �2ðtÞ. Therefore, the connection
between superdiffusive behavior and non-Gaussianity is a
remarkable example of how nonequilibrium dynamics also
enables a deeper physical understanding of the equilibrium
system by uncovering essential underlying physical
properties.
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