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We propose and analyze a technique to collectively enhance interactions between solid-state quantum

registers composed from random networks of spin qubits. In such systems, disordered dipolar interactions

generically result in localization. Here, we demonstrate the emergence of a single collective delocalized

eigenmode as one turns on a transverse magnetic field. The interaction strength between this symmetric

collective mode and a remote spin qubit is enhanced by the square root of the number of spins

participating in the delocalized mode. Mediated by such collective enhancement, long-range quantum

logic between remote spin registers can occur at distances consistent with optical addressing. A specific

implementation utilizing nitrogen-vacancy defects in diamond is discussed and the effects of decoherence

are considered.
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Harnessing collective phenomena by utilizing ensem-
bles of identical particles is a powerful tool, which has
been exploited in effects ranging from superradiance to
scattering suppression [1]. The coherent dynamics result-
ing from interactions with individual constituents of an
ensemble are often too weak to be observed directly;
however, as evidenced by experiments in systems such as
Rydberg atoms [2–4], cavity QED [5,6], atomic ensembles
[7,8], and solid-state qubits [9], collective enhancement
provides a natural route to overcoming this challenge.
Here, we demonstrate that, for electronic spin quantum
registers, such collective effects enable an extended coher-
ent coupling over large distances—an essential prerequi-
site for quantum information processing.

Owing to favorable coherence properties, electronic
spins associated with pointlike defects in solid-state sys-
tems have garnered significant recent interest as candidates
for room-temperature quantum registers. Quantum control
of such spins can be achieved using a combination of
optical, magnetic, and electric fields. While our consider-
ations apply to a variety of electronic spin qubits [10–12],
here we focus on the nitrogen-vacancy (NV) center in dia-
mond. The NV center harbors an electronic spin (S ¼ 1),
which can be optically initialized, coherently manipulated,
and readout on subwavelength scales [13–15]. These results
have sparked several recent proposalswhich utilize networks
of NV registers as the platform for a scalable quantum
information processor [16–19]. However, for any spin qubit
candidate, two crucial challenges remain to be addressed:
(1) the weakness of the magnetic dipolar interactions on
distances compatible with individual optical addressing
and (2) the disorder in spin positioning due to inherent
imperfections during defect creation.

In this Letter, we present a novel approach to remote
quantum logic which harnesses collectively enhanced
interactions to overcome both of the above challenges.

The key idea underlying our proposal is to associate a
single, robust qubit with a collective, generally disordered
spin ensemble (Fig. 1). If the spins behave in an aggregate
fashion, such a qubit can produce a large state-dependent
magnetic field, leading to enhanced long-range coupling
between ensembles; this is reminiscent of tailored light-
matter interactions achieved via atomic ensembles [20].
However, we note that quenched disorder naturally leads to
localization in solid-state spin systems [21] due to random
flip-flop interactions. Similar to Anderson localization
[22], this implies that each eigenmode of the ensemble is
composed of only a few spins. Here, we demonstrate the
use of a uniform transverse magnetic field to overcome
this issue. The applied field causes the symmetric W state
[23,24] to become an approximate eigenstate of the
Hamiltonian, thereby enabling us to harness it as a collec-
tive qubit. Moreover, we show that this particular state is
largely insensitive to the underlying spin distribution and
hence robust to effects of disorder.
To be specific, we now describe our proposal in the

context of NV diamond color centers. The largest energy
scale in this system (�) is set by a combination of the
zero-field splitting (2.87 GHz) and the projection of

FIG. 1 (color online). High-density NV spin ensemble distrib-
uted randomly within a sphere of diameter r, with an average
distance a. The NV centers have three internal spin states that are
split by a zero-field splitting and a Zeeman field.
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the external Zeeman field along the NV axis. However,
we would like to stress that the alignment of the field
with the NV axis is not crucial, as its quantization axis is
essentially given by the zero-field splitting. We assume
that the Zeeman field is sufficiently strong to ensure that
the ms ¼ �1 spin state is sufficiently far detuned and
hence does not contribute to the effective dynamics.
Thus, the number of ms ¼ 1 spins, m, is an approxi-
mately good quantum number and a perturbative
description is justified. The second-largest energy scale
arises due to the perturbation created by the transverse
field �. To gain a qualitative understanding, let us re-
strict ourselves to the analytically tractable case where

m is either 0 or 1. The effective Hamiltonian is Hr ¼
��j0ih0j þ ffiffiffiffi

N
p

�ðj0ihWj þ H:c:Þ, where the state j0i has
all ensemble spins polarized into ms ¼ 0, and the col-
lective jWi state is fully symmetric with all spins sharing
a single excitation,

jWi ¼ 1
ffiffiffiffi

N
p X

i

j0 . . . 1i . . .i: (1)

Second order perturbation theory in
ffiffiffiffi

N
p

�=� yields

H0
r ¼ �ð�þ JÞj~0ih~0j þ Jj ~Wih ~Wj, with J ¼ N�2=� and

the tilde referring to the perturbed eigenstates. Including
higher m manifolds merely leads to a renormalization of
J, without changing this qualitative picture (so long as
we are in the perturbative limit). This is equally true in
the presence of dipolar interactions, provided that the
energy scale J is larger than the characteristic strength of
the dipolar interaction Vdd. Thus, even with these addi-
tional terms, the new eigenstates will still have substan-
tial overlap with the collective jWi state. This is in stark
contrast to the situation without a transverse field, where
strongly quenched disorder owing to random spin posi-
tions localizes all such eigenstates, even in three dimen-
sions. Furthermore, the dipolar interaction naturally
ensures that collective states with different m values
will have different energies, leading to a ‘‘blockade-
type’’ scenario, where manifolds with m> 1 are ener-
getically inaccessible [23,24]. This allows us to
selectively drive the transition between j0i and jWi
without populating any other collective states, provided
that the external driving �ext is weaker than Vdd. This
hierarchy of energy scales can be summarized as
� � J � Vdd � �ext.

Let us consider a three-dimensional ensemble of
N ¼ 100 NV centers randomly distributed within a diame-
ter r ¼ 20 nm, as depicted in Fig. 1. Such high density NV
ensembles have been recently realized using long-time
annealing of repeat-electron-irradiated diamond samples
[25–28]. We will characterize our effective two-level sys-
tem (ms ¼ 0, 1) using Pauli spin operators ��. Being
magnetic dipoles, NV centers interact with one another
via long-range magnetic dipolar interactions (ignoring
energy nonconserving terms which are suppressed by the
NV center’s zero-field splitting),

Vij ¼ ð1� 3cos2#ijÞ �2

jri � rjj3

�
�

1

4
½1þ �ðiÞ

z �½1þ �ðjÞ
z � � �ðiÞ

þ�ðjÞ� � �ðiÞ��ðjÞ
þ
�

; (2)

where ri denotes the position,� characterizes the magnetic
dipole moment, and #ij is the angle between the NV axis

and the vector connecting sites ri and rj. The total

Hamiltonian including both on-site and interaction terms

is then given by H ¼ �=2
P

i�
ðiÞ
z þ�

P

i�
ðiÞ
x þP

i<jVij.

Now, let us turn to the enhanced coupling between an
isolated NV defect (hereafter termed ‘‘qubit’’) and the
collective ensemble, separated by the distance R. We envi-
sion the ensemble to be initialized into the j0i state, while
the NV qubit is initialized to thems ¼ 1 state. By ensuring
that the qubit splitting is tuned resonant with only the jWi
state, one finds that the effective dynamics are restricted
to the single-excitation manifold of the combined qubit-
ensemble system; to lowest order, these dynamics are
governed by

Heff ¼
ffiffiffiffiffiffi

Nc

p �2

R3
ðj1q; 0ih0q;Wj þ H:c:Þ; (3)

where Nc characterizes the approximate number of spins
participating in the jWi state and the notation j1q; 0i refers
to the combined state with the NV qubit being in ms ¼ 1
and with the ensemble spins being in j0i. Consistent with
subwavelength techniques such as stimulated emission
depletion microscopy (R ¼ 100 nm), we will assume that
the NV qubit can be manipulated and readout indepen-
dently of the ensemble [29].
To support the qualitative picture presented above, we

now perform exact diagonalization of the interacting spin
Hamiltonian. In the majority of the numerics, we restrict
ourselves to m � 2 excitations; however, we check the
validity of our results by including the m ¼ 3 manifold
for slightly smaller system sizes. For each eigenstate j�i,
we calculate the collective enhancement factor, defined as

Nc ¼
�

X

N

i

h01 . . . 1i . . . 0Nj�i
�

2
; (4)

which for a symmetric eigenmode characterizes the num-
ber of participating ensemble spins. As expected, in the
absence of a transverse field, disorder localizes all eigen-
states and, as depicted in Fig. 2 [dark gray (blue) circles],
Nc � N for all eigenstates. On the other hand, In the case
of a moderate transverse field � ¼ �B, with B � 40 G,
one finds the existence of a single eigenstate with Nc �
70� N. While the specific details of this state depend on
the microscopic details (e.g., spin distribution within the
ensemble, higher-order couplings to the ms ¼ �1 state,
and magnitude of the applied transverse field), its collec-
tive nature is rather robust. In particular, as one varies the
strength of the transverse field B, there exists a large
parameter regime where Nc > 50 (Fig. 2). This result
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clearly supports our previous analytical arguments on the
existence of a symmetric collective mode. The dips in Nc

are associated with resonance effects, which arise when
other eigenstates become near-degenerate with the collec-
tive state. Finally, the decrease of Nc for large values of �

signals the breakdown of perturbation theory as
ffiffiffiffi

N
p

�=�
approaches unity.

We now perform simulations of the combined qubit-
ensemble system. As previously discussed, the system is
initialized to j1q; 0i and the qubit splitting is tuned resonant
with the energy of the collective mode; the resulting dy-
namics is evinced in Fig. 3. Interestingly, the probability of

finding the qubit in the ms ¼ 1 state, pq, exhibits collec-

tively enhanced Rabi oscillations. The frequency of these
oscillations is enhanced by nearly an order of magnitude
relative to that expected for bare dipolar interactions
between two individual NV qubits at a similar distance.
The numerics also allow us to obtain the time required for
an interaction-induced � pulse, t�, and from this, one can
derive the effective distance R associated with Heff .
Surprisingly, in all cases, we observe that this distance
corresponds not to R-r, but instead to the distance between
the NV qubit and the center of the ensemble. We study
the effects of putting the qubit closer to the ensemble by
calculating the collectively enhanced coupling strength Vc

(as extracted from the numerically obtained t�). As shown
in Fig. 3, we find that only for distances very close to the
ensemble does the collective enhancement deviate from
the asymptotic 1=R3 scaling; e.g., the qubit is coupled to
individual spins rather than to the entire ensemble.
Experimental realization and decoherence.—Thus far,

our discussion has assumed that both the NV qubit and the
ensemble spins are perfectly decoupled from the environ-
ment. In any experimentally realistic scenario, however,
there are two natural error sources which will be present:
spin decoherence and spin relaxation. We are particularly
interested in the scaling of the error rates with N, as this
may adversely affect the scaling fidelity of our proposed
long-range gates [19]. As the error processes act locally on
individual spins, we first calculate the error rate for a single
spin and multiply the result by N to obtain the rate for the
collective state. For simplicity, we assume that the collec-
tive state is the previously described jWi state in which a
single excitation is shared among all N spins.
First, let us consider the effects of spin decoherence. The

worst-case scenario for such decoherence is given by
the leaking out into nonsymmetric states. Consequently,
the error probability after a single T2 decoherence event on
spin i is given by the probability to leave the jWi state,

p �W ¼ pT2
½1� jhWj�ðiÞ

z jWij2� ¼ 4

N
pT2

�

1� 1

N

�

; (5)

where pT2
is the single spin decoherence rate. For large N,

this result is essentially independent of N (after weighing
with the number of spins); therefore, the effect of T2

processes on such a collective jWi state does not get
enhanced by system size and, in fact, is only slightly worse
than for a single spin; i.e., it can be expressed in terms of an
effective coherence time Teff

2 .
Second, we consider the errors arising from phonon-

induced spin relaxation processes (T1). Here, we must
distinguish between processes which flip an ensemble
spin from ms ¼ 1 to ms ¼ 0, and the reverse. This asym-
metry can easily be seen by noting that the jWi state
has only one spin in ms ¼ 1, while all other spins are in
ms ¼ 0. We denote the error probability associated with
these two events as p1!0

T1
and p0!1

T1
, respectively. For p1!0

T1
,

FIG. 2 (color online). Comparison of the collective enhance-
ment Nc for B ¼ 0 [dark gray (blue)] and B ¼ 40 G [light gray
(yellow)] within the single excitation manifold. In the latter
case there is a collectively enhanced state with Nc � 70, corre-
sponding to an increase by more than 1 order of magnitude
(� ¼ h� 4 GHz). The inset shows the maximum value of
Nc depending on the transverse field strength B.

FIG. 3 (color online). Collectively enhanced Rabi oscillations
between an isolated NV qubit and a NV ensemble. The proba-
bility to find the qubit in thems ¼ 1 state, pq, goes to zero within

a time t� � 600 �s. The inset shows the collectively enhanced
coupling strength Vc between the qubit and the ensemble for four
different realizations. The dashed line shows the asymptotic
1=R3 dependence.
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the state j0i with all ensemble spins in ms ¼ 0 is not
affected at all, while the probability to flip from the jWi
state into j0i is given by

pW!0 ¼ pT1!0
1

jh0j�ðiÞ� jWij2 ¼ pT1!0
1

N
; (6)

which is again independent of the size of the ensemble
after rescaling with N.

However, this is not the case for T0!1
1 processes. Both

the j0i and the jWi state are strongly affected by such
processes, since the existence of any additional spin in
the ms ¼ 1 state corresponds to an effective magnetic
impurity; this impurity modifies the energy of the collec-
tive state, thus tuning it out of resonance with the NV qubit.
Additionally, this new state is also no longer an eigenstate
of the Hamiltonian; numerical simulations demonstrate
that this state dephases very quickly due to dipolar inter-
actions within the ensemble. Thus, since any single spin
T0!1
1 error will immediately decohere the collective state,

the effective error rate owing to p0!1
T1

is enhanced byN and

scales with the size of the ensemble.
While the system size scaling of p0!1

T1
errors might seem

unfortunate, in solid-state spin systems, it is often the case
that T1 � T2. Our proposed protocol is particularly useful
in cases where T1=N remains longer than T2, implying that
the ensemble’s noise is dominated by decoherence as
opposed to the enhanced relaxation. The specific example
of NV centers highlights this crucial point. The decoher-
ence of the NVoriginates from fluctuating magnetic fields
as neighboring pairs of dipoles flip-flop [30,31]. Even at
low temperatures it is impossible to freeze out such mag-
netic fluctuations and T2 remains on the order of milli-
seconds [30,32]. On the other hand, the relaxation of the
NV is thought to originate from an Orbach spin-phonon
process; such a process has an exponential dependence on
temperature and implies that even moderate cooling can
yield exceedingly long T1 times (� 1 s at cryogenic
temperatures) [33–35]. By liquid nitrogen temperatures,
the errors introduced by the enhanced T1 processes are
already subpercent, enabling us to focus on the effects of
decoherence. An alternate approach to combat the enhanced
relaxation of the collective state is to utilize conventional
dynamical decoupling techniques [e.g., Waugh-Huber-
Haeberlen (WAHUHA)] [36] to suppress dipolar interac-
tions within the individual ensembles.

Collective quantum gates.—We now turn to a possible
application where isolated NV qubits are interspersed with
high-density NVensembles, forming a regular structure, as
depicted in Fig. 4(a). The qubits are used for initialization,
single-qubit rotations, and readout. Two-qubit gates
between remote spin qubits are mediated by the ensemble
between them and thus benefit from collectively enhanced
interactions. We would like to point out that such archi-
tectures put only modest requirements on the positioning
of the NV centers; in particular, the positional disorder

within the NVensembles is essentially irrelevant. The gate
time tg is limited by the SWAP time t� required to transfer

the information from one of the qubits to the ensemble
(required four times per gate operation) [37]. The resulting
error (assuming T1=N � T2) of the gate is given by " ¼
1� exp½�ð4t�=Teff

2 Þ3� in the presence of spin echo decou-
pling [38]. For an error of " ¼ 10�2, this translates to a
required coherence time of Teff

2 ¼ 11 ms, which can be

readily realized in isotopically pure diamond samples
[30,32] or by using dynamical decoupling pulses [31,39].
The requirements on the coherence time can be further
relaxed by increasing the number of spins in the ensemble
or by reducing the qubit-ensemble separation.
An architecture featuring even better gate fidelities can

be realized using a collective encoding scheme for the
qubits [see Fig. 4(b)]. There, the logical j0i state corre-
sponds to all nuclear spins being polarized, while the
logical j1i state is a collective nuclear spin jWi state.
This state can be prepared by applying a microwave pulse
to map the electronic jWi state onto a nuclear spin jWi
state [24]. The time scale for such a single-qubit operation
is limited to approximately 100 kHz by the hyperfine
splitting of the NV centers in the ms ¼ 1 state (Ak �
�2:14 MHz for 14N) [40]. Operation at cryogenic tem-
peratures allows for resonant readout of the jWi state via
the zero phonon line without significant background fluo-
rescence [41]. In this collective qubit architecture, two-
qubit gates between ensembles are enhanced by a factor

of N instead of
ffiffiffiffi

N
p

, thus leading to a SWAP time of t� ¼
70 �s. Thus, we find that a gate error of " ¼ 10�2 requires
a coherence time of Teff

2 ¼ 700 �s, while for " ¼ 10�4, a

coherence time of Teff
2 ¼ 3 ms is needed [30,32,42,43].

In summary, we have shown that collectively enhanced
interactions can be realized between a NV qubit and a
mesoscopic NV ensemble. Our proposed approach relies
upon a transverse magnetic field to inhibit the localization

(a) (b)

FIG. 4 (color online). Scalable architectures with collectively
enhanced interactions, corresponding to a lattice spacing of
R ¼ 100 nm, compatible with subwavelength optical address-
ing. (a) Individually addressable NV qubits [light gray (yellow)]
are used for single-qubit operations (SQR), whereas the collec-
tively enhanced interaction with an ensemble is used to mediate
two-qubit gates via SWAP operations. (b) NV ensembles are used
as collective qubits, where also single-qubit operations are
performed using the collective jWi state.
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of a symmetric W eigenstate. Our work enables the real-
ization of collectively enhanced quantum gates with high
fidelity and provides an important step towards the real-
ization of scalable quantum information architectures
involving solid-state electronic spins.
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