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Given a microscopic lattice Hamiltonian for a topologically ordered phase, we propose a numerical

approach to characterize its emergent anyon model and, in a chiral phase, also its gapless edge theory.

First, a tensor network representation of a complete, orthonormal set of ground states on a cylinder of

infinite length and finite width is obtained through numerical optimization. Each of these ground states is

argued to have a different anyonic flux threading through the cylinder. Then a quasiorthogonal basis on the

torus is produced by chopping off and reconnecting the tensor network representation on the cylinder.

From these two bases, and by using a number of previous results, most notably the recent proposal of

Y. Zhang et al. [Phys. Rev. B 85, 235151 (2012)] to extract the modular U and S matrices, we obtain (i) a

complete list of anyon types i, together with (ii) their quantum dimensions di and total quantum dimension

D, (iii) their fusion rules Nij
k, (iv) their mutual statistics, as encoded in the off-diagonal entries Sij of S,

(v) their self-statistics or topological spins �i, (vi) the topological central charge c of the anyon model,

and, in a chiral phase (vii) the low energy spectrum of each sector of the boundary conformal field theory.

As a concrete application, we study the hard-core boson Haldane model by using the two-dimensional

density matrix renormalization group. A thorough characterization of its universal bulk and edge

properties unambiguously shows that it realizes a � ¼ 1=2 bosonic fractional quantum Hall state.

DOI: 10.1103/PhysRevLett.110.067208 PACS numbers: 75.10.Kt, 03.67.�a

Introduction.—Determining the emergent order of an
interacting quantum many-body system from its micro-
scopic description is one of the main goals of condensed
matter theory. It is also an extremely challenging problem.
Consider, for instance, a lattice Hamiltonian H suspected
of realizing some form of topological order [1], say a given
Laughlin state [2] or a quantum spin liquid [3,4]—states
of considerable interest in the study of exotic many-body
phenomena, such as the fractional quantum Hall (FQH)
effect [5], and in the design of a quantum computer
protected from decoherence by topology [6,7]. Due to a
lack of theoretical and computational tools, assessing
whether the Hamiltonian H is indeed topologically
ordered, and then establishing what type of topological
order it realizes, have traditionally been considered very
difficult tasks. However, recent advances in the under-
standing of many-body entanglement have progressively
brought us closer to being able to tackle such questions. On
the theoretical side, new ways of diagnosing the presence
and type of topological order from knowledge of the
ground state wave function alone, based on entanglement
entropy [8–10], entanglement spectrum [11,12], and
modular transformations [13,14], have been put forward.
On the computational side, the advent of tensor networks
[15–21] makes it now possible, by mimicking the structure
of entanglement, to efficiently represent a large class of
low energy many-body states.

In this Letter, we combine and build upon the above
developments [8–21] to produce an approach that, given a
microscopic Hamiltonian H on a two-dimensional lattice,
characterizes its emergent topological order. The key of

our approach is the numerical computation of a basis of
ground states of H, first on an infinite cylinder, then on a
finite torus. Each ground state has a different anyon flux
through the cylinder or torus, so that ground states are in
one-to-one correspondence with types of anyons in the
emergent anyon model. These ground states are encoded
in a tensor network representation, from which we can
extract the universal properties of the emergent edge and
bulk theories. For concreteness, we focus on a specific
lattice Hamiltonian, namely the Haldane model on the
honeycomb lattice [22] with hard-core bosons [23],

HHal: ¼ �t
X
hrr0i

byr br0 � t0
X
hhrr0ii

byr br0ei�rr0

� t00
X

hhhrr0iii
byr br0 þ H:c:; (1)

wherewe set� ¼ 0:4� and ðt; t0; t00Þ ¼ ð1; 0:6;�0:58Þ, and
where t, t0, and t00 stand for the hoping amplitudes between
nearest, next-nearest, and next-next-nearest neighbors,
respectively. For these parameters, Ref. [23] found two
quasidegenerate ground states and a nontrivial Chern num-
ber C ¼ 1 using exact diagonalization on small tori, while
Ref. [20] computed a nonzero topological entanglement

entropy (TEE) [8,9]� � log
ffiffiffi
2

p
by studying finite cylinders

with the density matrix renormalization group (DMRG)
[15]. These results strongly indicate the presence of topo-
logical order and are suggestive of a � ¼ 1=2 bosonic FQH
state [2,24]. Such a state would have a chiral semion [25] in
the bulk and a SUð2Þ1 Wess-Zumino-Witten conformal
field theory (CFT) [26] at the edge. Here, without making
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use of any previous knowledge about HHal:, we produce a
detailed characterization of both bulk and edge theories and
therefore unambiguously demonstrate the emergence of a
� ¼ 1=2 bosonic FQH state. Our approach can be readily
applied to other Hamiltonians on honeycomb, triangular,
and kagome lattices (with �=3 rotational symmetry), and
can be generalized to arbitrary lattices (even without any
rotational symmetry) [27].

Ground states on an infinite cylinder.—Our goal is to
investigate a generic microscopic lattice model realizing a
topologically ordered phase, as characterized by an emer-
gent anyon model with N types of anyon flux. For this
purpose, we define the model on a cylinder of size Lx � Ly,

as measured in lattice unit cells, with infinite length
Lx ¼ 1 and finite width Ly; see Fig. 1(a).

Let us first consider the ground subspace of a fixed-point

Hamiltonian Hð0Þ, with a vanishing correlation length

�ð0Þ ¼ 0. This ground subspace is spanned by N orthonor-

mal states fj�cylð0Þ
i ig, where state j�cylð0Þ

i i has anyon type i
threading through the cylinder. Notice the one-to-one cor-

respondence with theN ground states ofHð0Þ on a torus [1].
(An infinite torus can be obtained by identifying the
x ¼ �1 ends of the infinite cylinder. The absence of
boundaries on an infinite cylinder, which could assign
different boundary energies to each anyon flux i, is essen-
tial in order to establish the N-fold ground state degener-
acy.) Let us now consider a more realistic Hamiltonian H

for the same topological phase, with H ¼ Hð0Þ þ V for

some perturbation V that decomposes into sum of local
terms. Perturbation V introduces a finite correlation length
� > 0. Following Ref. [6], for Ly � � we expect degen-

erate perturbation theory to apply. Because Lx is infinite, at
any finite order in a perturbative expansion, virtual anyon
pairs created, propagated, and annihilated by V can only
close a nontrivial loop in the ŷ direction. These virtual pairs
may renormalize the energy of each ground state by an
amount that depends on the anyon flux i threading through
the cylinder, but they cannot change this flux. The net

result is that the state j�cyl
i i, obtained from j�cylð0Þ

i i by
adiabatically switching on perturbation V, is an eigenstate
of H with anyonic flux i, as measured by a dressed Wilson
loop operator [28] encircling the cylinder in the ŷ direction.

Correspondingly, we refer to j�cyl
i i as the ground state

of H with flux i through the cylinder. Notice that the

energy per unit cell, ei � h�cyl
i jHj�cyl

i i=ðLxLyÞ, satisfies
ei � ej � e�Ly=� [6]. Reference [19] already pointed out

that the absolute ground state of H on a sufficiently long
cylinder has well-defined anyon flux (of some unknown
type) through it. Above we argued that actually each of the

N quasidegenerate ground states j�cyl
i i has this property,

which is key to the present approach.
Tensor network approach.—As a variational ansatz for

each ground state j�cyl
i i of H on a cylinder, we employ a

matrix product state (MPS) optimized using DMRG [15],
as in previous finite cylinder calculations [18–21]. Here,
however, we use an infinite MPS, characterized by a finite
unit cell of tensors that are repeated throughout the infinite
cylinder [see Fig. 2(a)] and an infinite DMRG algorithm
[29,30] adapted to cylinders, as detailed in Ref. [27]. The
computational cost scales exponentially with the width Ly

of the cylinder. As a result, only small values of Ly can be

(a)

(b) (c)

FIG. 1 (color online). (a) Honeycomb lattice on a cylinder with
Lx ¼ 1 and Ly ¼ 4 (as measured in number of unit cells). A

blue, dashed line indicates the entanglement cut used in dividing
the cylinder into two semi-infinite cylinders. (b) Ground states

j�cyl
1 i and j�cyl

s i of HHal: in Eq. (1) with flux i ¼ 1, s.
(c) Corresponding density matrices �1 and �s for the left half
of the infinite cylinder.

(a) (b)

FIG. 2 (color online). (a) MPS representation of a state j�cyl
i i

of an infinite cylinder with Ly ¼ 4; see Fig. 1(a). The bond

indices that connect tensors form a snake. The MPS unit cell
consists of eight tensors that are repeated indefinitely.
(b) Periodic MPS for a state j�tor

i i of a torus with 4� 4� 2 ¼
32 sites, obtained by reconnecting four MPS unit cells of j�cyl

i i.
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considered. To ensure small finite size effects, we would
like to have Ly � �.

Specifically, we have analyzed the Hamiltonian HHal: of
Eq. (1) on infinite cylinders of width Ly ¼ 4, 6, and 8.

For each width Ly, we repeated the optimization of infinite

MPS several times, starting from random variational pa-
rameters. Each energy minimization arbitrarily produced

one of two states, which we denote j�cyl
1 i and j�cyl

s i,
anticipating that they correspond to anyon types i ¼ 1, or
identity charge, and i ¼ s, or semion charge, respectively.
(This will be confirmed later.) We conclude that HHal:

has at least two ground states or, equivalently, that the
emergent anyon model has N � 2 anyon charges. A
correlation length � � 0:52 for both states, computed
from a transfer matrix, verifies that �=Ly � 0:065 � 1,

and thus we expect small finite size effects.
Next, we cut and reconnect the MPS representation for

the ground state j�cyl
i i on an infinite cylinder to obtain a

(periodic) MPS for a state j�tor
i i on a finite torus, as

illustrated in Fig. 2. Crucially, state j�tor
i i inherits the

property of having an anyon of type i threading inside
the torus; see Fig. 2(b). The rest of this Letter explains

how, with the states fj�cyl
i ig and fj�tor

i ig for an infinite
cylinder and a finite torus, one can use the results of
Refs. [8–14] to characterize in great detail the anyon model
emerging from Hamiltonian HHal:.

Entanglement spectrum and entanglement entropy.—

The tensor network for state j�cyl
i i on the infinite cylinder

readily provides access to the eigenvalues fpi;�g of the

reduced density matrix �i for a semi-infinite cylinder;
see Fig. 1(c). The corresponding entanglement spectrum
(ES) [11,12], plotted in Fig. 3, reveals that each ground

state of HHal: is associated with one of the two primary
fields of the chiral SUð2Þ1 Wess-Zumino-Witten CFT [26],
namely the identity operator and the chiral boson vertex

operator ei�=
ffiffi
2

p
, which are seen to be a singlet and a

doublet of an emergent SUð2Þ symmetry. Specifically, the

ES of j�cyl
1 i is organized according to the scaling dimen-

sions and conformal spins of the identity primary field of
this CFT and of its tower of (Kac-Moody and Virasoro)

descendants, whereas the ES of j�cyl
s i corresponds to

operator ei�=
ffiffi
2

p
and its descendants, which justifies our

previous identification of j�cyl
1 i and j�cyl

s i with the any-

onic charges i ¼ 1 and s, respectively. Thus, from the ES

of fj�cyl
i igwe have unambiguously identified the edge CFT

of the emergent anyon model. Furthermore, from the en-
tropy Sð�iÞ � �P�pi� logðpi�Þ, which scales with Ly as

�Ly � �i [8,9], we can also estimate the TEE �i for j�cyl
i i.

We obtain �1 � 0:3455, �s � 0:986� �1, very similar to
the finite cylinder result (for just one ground state) of
Ref. [20], where the same type of corner-free bipartition
of a cylinder was first considered. The expression [8,10]

�i ¼ � logðdi=DÞ; D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðdiÞ2
s

; (2)

allows us then to compute each quantum dimension di and
the total quantum dimension D as follows. First, we note
that the sum

P
iðdi=DÞ2, made of positive contributions,

only reaches unity when it includes all the anyon types. We
can use this sum to determine whether we have obtained a
complete set of ground states. Our estimates of �i yield
ðd1=DÞ2 þ ðds=DÞ2 � 1:007. We conclude that HHal: only
has two ground states; i.e., the emergent anyon model has
N ¼ 2 types of anyons, in agreement with exact results
for small tori [23]. We then use the fact that any anyon
model has the identity flux, with quantum dimension
d1 ¼ 1, to numerically obtain the quantum dimension
ds ¼ 1:005 from �s � �1 ¼ � logðds=d1Þ, and the total
quantum dimension D ¼ 1:413 from �1 ¼ � logðd1=DÞ.
These values are very close to the exact ds ¼ 1 and D ¼ffiffiffi
2

p � 1:414 of the semion model [25].
Modular U and S matrices.—Next we use the states

fj�tor
i ig on a finite torus to compute, following Ref. [13],

the modular matrices S and U that characterize the mutual
and self-statistics of the emergent anyon model [31],

S ¼ S11 S1s

Ss1 Sss

" #
; U ¼ e�ið2�=24Þc �1 0

0 �s

" #
: (3)

Here, S1i ¼ Si1 ¼ di=D and the entry Sij determines

(for any Abelian anyon model) the phase acquired when
an anyon of type i encircles an anyon of type j, c is the
central charge of the anyon model, and �i corresponds to
the phase acquired when an anyon of type i is exchanged
with another anyon of type i (and thus �1 ¼ 1).

FIG. 3 (color online). Entanglement spectrum of the reduced
density matrix �i for half an infinite cylinder for ground state

j�cyl
i i, for i ¼ 1 (left) and s (right). The vertical axis shows

Ei;� � � logðpi;�Þ (up to a global shift and rescaling), where

fpi;�g are the eigenvalues of �i. The horizontal axis shows the

momentum of the corresponding eigenvector of �i, artificially
extended beyond its 2� periodicity. All eigenvalues of �i with
the same particle number (also indicated) are connected with a
tilted line. They obey the degeneracy pattern f1; 1; 2; 3; 5; 	 	 	g,
characteristic of a bosonic Gaussian theory.
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A �=3 clockwise rotation R�=3 on the torus corres-

ponds to applying the modular transformation us�1,
where u and s generate the group of modular transforma-
tions on the torus [13]. Correspondingly, the overlaps
Vij � h�tor

i jR�=3j�tor
j i between the bases fj�tor

i ig and

fR�=3j�tor
j ig define a unitary transformation V ¼

DyUS�1D. Here, D is a diagonal matrix that contains
arbitrary phases Djj ¼ ei�j (due to the phase freedom in

choosing each j�tor
j i), and S and U generate a representa-

tion of the modular group on the ground subspace of HHal:.
We find

V¼e�ið2�=24Þc S11 Ss1e
ið�s��1Þ

S1s�se
ið�1��sÞ ðSssÞ
�s

" #
; (4)

¼ 0:683� 0:183i �0:696þ 0:137i

�0:228� 0:671i �0:185� 0:683i

" #
; (5)

where in the first line we use that S1i, Si1 > 0, S�1 ¼ Sy,
and �1 ¼ 1, whereas the second line shows the overlaps Vij

for a torus made of 6� 6� 2 ¼ 72 sites, computed from
the periodic MPS representations using Monte Carlo sam-
pling [32], with sampling noise on the order of 10�4.
Building on Ref. [13], here we note that from matrix V
we can actually compute both U and S. Indeed, from V11

we obtain the central charge c and S11; then from V1s we

read eið�s��1Þ and Ss1; from Vs1 we extract �s and S1s;
finally, Vss yields Sss. We thus obtain

S ¼ 1ffiffiffi
2

p 1 1

1 �1

" #
þ 10�3ffiffiffi

2
p �1:4 0:07

�0:8 4þ 4i

" #
; (6)

U¼ e�ið2�=24Þ 1 0

0 i

" #
�
 
eið2�=24Þ0:01

1 0

0 e�i0:007

" #!
; (7)

which accurately reproduce the exact S and U of a chiral
semion model, namely

1ffiffiffi
2

p
�
1 1
1 �1

�

and

e�ið2�=24Þ 1 0
0 i

� �
:

Properties (i)–(vi) of the emergent anyon model listed
in the abstract can now be extracted from Eqs. (6) and (7)
as follows. The first row and column of S correspond to
S1i ¼ Si1 ¼ di=D. Therefore, Eq. (6) gives us an estimate
for each di=D [Notice that these estimates are independent
from those obtained through the TEE of Eq. (2).] We can
then repeat the argument used before to conclude that there
are (i) N ¼ 2 types of anyons, which we label i ¼ f1; sg,
with (ii) quantum dimensions d1 ¼ ds ¼ 1 and total

quantum dimension D ¼ ffiffiffi
2

p
, up to 10�3 corrections.

Verlinde formula Nij
k ¼ P

mðSimSjmðSmkÞ
=S1mÞ [33]

then reproduces (iii) the Z2 fusion rules, 1� 1 ¼ s� s ¼
1, 1� s ¼ s� 1 ¼ s, whereas (iv) the mutual statistics are
seen to be trivial, as expected since they always involve the
identity flux. Further, from Eq. (7) we find (v) topological
twists �1 ¼ 1 and �s ¼ i, characteristic of identity and
semion fluxes, and (vi) central charge c ¼ 1 (modulus
24), up to 10�2 corrections. From the above list of proper-
ties, only the degeneracy N ¼ 2 and the total quantum

dimension D ¼ ffiffiffi
2

p
were previously computed (with exact

diagonalization on small tori [23] and DMRG on finite
cylinders [20], respectively), which showcases the power
of studying ground states on an infinite cylinder instead.
In summary, we have proposed an approach to numeri-

cally obtain a complete set of ground states of a micro-
scopic lattice Hamiltonian H with emergent topological
order. In the infinite cylinder geometry, each of the ground
states was argued to have a different anyon flux threading
through the cylinder. By cutting and reconnecting their
tensor network representation, we also obtained analogous
states on a finite torus. From these two sets of states, we
then extracted a very fined grained characterization of the
emergent anyon model using Refs. [8–14]. The major
bottleneck of the approach, in the DMRG implementation
discussed here, is a computational cost that grows expo-
nentially with the width Ly of the cylinder, so that only

certain values of Ly (up to Ly ¼ 8 in our example) can be

afforded. It implies that only models with a small correla-
tion length �, such that � � Ly, can be consistently

analyzed. To overcome this limitation, we are currently
adapting scalable 2D tensor network approaches [16,17] to
infinite cylinders [27]. Finally, in this Letter we have only
extracted properties of the emergent anyon model that are
directly available from ground states of H. With further
manipulation, it is also possible to obtain an explicit
representation of fractionalized quasiparticle excitations
of H [27].
The authors thank Jaume Gomis and Xiao-GangWen for

guidance in identifying the edge theory resulting from the
numerical simulations, and Oliver Buerschaper, Tarun
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