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We formulate a dynamical real space renormalization group (RG) approach to describe the time

evolution of a random spin-1=2 chain, or interacting fermions, initialized in a state with fixed particle

positions. Within this approach we identify a many-body localized state of the chain as a dynamical

infinite randomness fixed point. Near this fixed point our method becomes asymptotically exact, allowing

analytic calculation of time dependent quantities. In particular, we explain the striking universal features

in the growth of the entanglement seen in recent numerical simulations: unbounded logarithmic growth

delayed by a time inversely proportional to the interaction strength. This is in striking contrast to the much

slower entropy growth as loglogt found for noninteracting fermions with bond disorder. Nonetheless, even

the interacting system does not thermalize in the long time limit. We attribute this to an infinite set of

approximate integrals of motion revealed in the course of the RG flow, which become asymptotically

exact conservation laws at the fixed point. Hence we identify the many-body localized state with an

emergent generalized Gibbs ensemble.

DOI: 10.1103/PhysRevLett.110.067204 PACS numbers: 75.10.Pq, 03.67.Mn, 05.70.Ln, 72.15.Rn

What is the effect of interactions on Anderson localiza-
tion? One common wisdom is that any amount of inter-
action will give rise to collective excitations that could
assist transport at nonvanishing temperature even if single
particle states are all localized. But the belief that there are
no strict many-body insulators at T > 0 has been chal-
lenged by theoretical arguments, dating as far back as
Anderson’s original paper, which suggest a many-body
localization transition marking a critical point in the trans-
port properties of a closed quantum system [1,2]. The idea
has recently gained support from numerical studies [3–6].
Furthermore, simulations of one-dimensional systems have
revealed remarkably universal behavior of the dynamics in
the putative many-body localized state [7–9]. For example,
the time evolution following a quench shows unbounded
logarithmic growth of the entanglement entropy, in striking
contrast to the bounded growth seen in a system of non-
interacting fermions.

In this Letter we provide a theory of the many-body
localized state using a novel renormalization group (RG)
to describe the dynamics of one-dimensional random sys-
tems. For certain initial conditions we can establish a
many-body localized state as an infinite randomness fixed
point of the dynamics near which the RG scheme is
asymptotically exact. Our results explain many of the
universal features found in the numerical simulations men-
tioned above.

As a starting point we consider the Hamiltonian of the
random spin-1=2 XXZ chain without local Zeeman fields:

H ¼ X
i

Ji
2
ðSþi S�iþ1 þ S�i Sþiþ1 þ 2�iS

z
i S

z
iþ1Þ: (1)

The couplings Ji and anisotropy parameters �i on sites i
are random variables drawn from uncorrelated probability
distributions. The couplings may be positive or negative
and we assume j�ij< 1. The spins in (1) can be mapped
using a Jordan-Wigner transformation to spinless fer-
mions with nearest-neighbor interactions, subject to bond
disorder.
To study the propagation of information through the

chain, we investigate the time evolution of the system start-
ing from a nonentangled initial state, which for simplicity
we take as an antiferromagnetic Néel state with spins point-
ing along the z axis. We shall see that this choice of initial
state greatly simplifies the scheme and allows us to obtain
well-controlled results for the dynamics at long times.
RG scheme.—Our approach utilizes the local separation

of scales induced by strong disorder to gradually eliminate
degrees of freedom oscillating at high frequencies. Thus
the role played by randomness is similar to that in the
standard RG scheme used to find ground state correlations
of disordered spin chains [10–12]. However, instead of
focusing on the ground state of the system, our scheme
targets the evolution of the chain at long times starting
from a specified (high energy) initial state. Such evolution
is affected by the complete many-body energy spectrum.
Similar ideas have been applied to solve classical dynamics
in certain random [13,14] as well as clean [15] systems, but
to our knowledge not to quantum dynamics.
Let � be the strongest exchange coupling on the chain.

The dynamics at the shortest time scales are oscillations of
frequency � between the j "#i and j #"i of the pair of spins
on the strong bond. On these time scales the strong pair is
effectively decoupled from its typically slower neighbors.
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To capture the dynamics on time scales much longer than
��1, we perturbatively eliminate the rapid oscillations,
thus renormalizing the couplings between the remaining
slow degrees of freedom.

Working in the interaction picture with respect to the
Hamiltonian of the strong pair, we compute the evolution

of the density matrix �ðtÞ ¼ Uy
I ðtÞjc 0ihc 0jUIðtÞ to second

order in the coupling to the rest of the chain. The ensuing
time dependence, averaged over the rapid oscillations, can
be matched term by term to that generated by an effec-
tive Hamiltonian �ðtÞ¼ expð�iHefftÞjc 0ihc 0jexpðiHefftÞ,
which describes the slow dynamics at time scales t �
��1. The scheme is controlled by the ratio of the typical
coupling to the neighboring spins over the coupling on
the strong bond. If, as the scheme is iterated, the distribu-
tion of coupling constants broadens, then the RG becomes
increasingly well controlled, or even asymptotically exact
if the system flows to infinite randomness [12].

The effective Hamiltonian is particularly simple for the
chosen initial conditions. At second order of perturbation
theory the j ""i and j ##i are never populated and therefore

truncated from the Hilbert space. The retained states j�i ¼
2�1=2ðj "#i � j #"iÞ of the strong pair can be taken as the

" = # states of a new pseudospin variable ~Sn, which initially
points along the positive or negative x axis. The effective
Hamiltonian resulting from the procedure can then be
written as

Heff ¼HchainþhnS
z
nþ JLJR

2�ð1��2
SÞ
ðSþL S�R þS�L SþR Þ

þ�SJLJR
2�

�
SþL S�R þS�L SþR

ð1��2
SÞ

��L�R

�S

SzLS
z
R

�
Szn; (2)

where the L, R indices denote the left and right neighbors
of the strong bond, �S is the anisotropy parameter on the
strong bond, hn is an effective magnetic field that can be
gauged away, and Hchain is the original Hamiltonian on the
rest of the chain. Because ½Heff ; S

z
n� ¼ 0, the time evolu-

tion can be computed separately for each eigenvalue � 1
2

of Szn, using H�
eff that does not depend on the operator ~Sn.

The different evolution under H�
eff together with the fact

that the new spin starts in a superposition of " and # leads to
entanglement between the effective spin on the strong bond
and its two neighboring spins. Full entanglement is gen-
erated after a time tent ¼ 2�=ðJLJR�SÞ, set by the differ-
ence in the exchange constant in H�

eff . Note that

entanglement is not generated in this process in the non-
interacting system � ¼ 0.

Apart from generating entanglement, the difference
between the evolution given "n or #n is not crucial for the
subsequent dynamics in the sense that they both lead to the
same recipe for renormalization of coupling constants.Hþ

eff

and H�
eff have the same form as the original Hamiltonian,

and we can directly read off the coupling generated

between ~SL and ~SR, neighboring the strong bond to the

left and right, upon decimation of that bond: ~J ¼ JLJR=�

and j~�j ¼ j�Ljj�Rj=4, where we neglected the linear �
correction to ~J. This approximation will be justified
a posteriori by the fact that � flows to zero. The renor-
malization of the exchange coupling is then identical to
that found in the random Heisenberg chain at T ¼ 0 and
leads to the random-singlet phase [10–12]. Note also that
we keep only the absolute value of the anisotropy. The sign
will randomize in the course of the RG flow because it
depends on the state of Szn.
The RG steps are iterated to produce a flow of the

probability distributions with decreasing cutoff � starting
from the microscopic cutoff �0. Using the scaling varia-

bles � ¼ ln�J and � ¼ � lnj�j, and � ¼ lnð�0=�Þ ¼
lnð�0tÞ, we obtain the following equation for the joint
probability distribution Pð�; �; �Þ:
@P

@�
¼ @P

@�
þ �ð0; �Þ

Z 1

0
d�Ld�Rd�Ld�R�ð� � �L � �RÞ

� �ð�� �L � �R � ln4ÞPð�L; �L; �ÞPð�R; �R; �Þ;
(3)

where �ð� ; �Þ ¼ R
d�Pð�; �; �Þ is the distribution of � .

Note that even if initially the variables � and � are
independent, a correlation builds up in the course of renor-
malization in the same way as it is generated in the ground
state [12].
By integrating over � we obtain an equation for �ð� ; �Þ,

@�

@�
¼@�

@�
þ�ð0;�Þ

Z 1

0
d�Ld�R�ð���L��RÞ�ð�LÞ�ð�RÞ:

(4)

This equation is identical to the flow leading to
the random-singlet ground state and it is solved by the

same ansatz [12], �ð� ; �Þ ¼ að�Þe�að�Þ� with að�Þ ¼
ð�þ 1=a0Þ�1.
Of course the above solution includes only partial infor-

mation on the fixed point of the dynamics. As in Ref. [12],
important information for calculation of physical quanti-
ties is held in the conditional average of the interaction
variable � given a value of � on the same bond, ��ð�;�Þ �R1
0 d��Pð�; �; �Þ=�ð�; �Þ. We derive the equation for this

moment by multiplying Eq. (3) by � and then integrating
over �:

@� lnð ��ð�Þ�Þ ¼ @� lnð ��ð�Þ�Þþ 2að�Þ
��ð�Þ

Z �

0
d� 0 ��ð� 0Þ: (5)

Neglecting the ln4 in (3) is justified near the fixed point
since the typical � flows to1. Substituting the solution for
�ð�;�Þ in Eq. (5), we find the solution

��ð�Þ ¼ 1

b0
ða0�þ 1Þ�

�
1þ ��

�þ 1=a0

�
; (6)
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where � ¼ ð1þ ffiffiffi
5

p Þ=2 is the golden ratio and b0 is deter-
mined by the initial condition.

An important ingredient for calculation of physical
properties is the distance between remaining spins, or
length of decimated clusters, at time t (see Fig. 1). Since
the flow (4) is formally the same as in Ref. [12], we
similarly obtain L� ¼ ða0�þ 1Þ2 ¼ ½a0 lnð�0tÞ þ 1�2,
which behaves as ln2ð�0tÞ at long times.

Results.—First, as an immediate corollary of the relation
LðtÞ, we can obtain the decay of the Néel order parameter.
This is given by the fraction of undecimated spins,
still frozen in a Néel order at time t: ms ¼ 1=LðtÞ ¼
1=½a0 lnð�0tÞ þ 1�2. It is interesting to contrast this
behavior with the decay of the staggered moment in the
analogous quench of a clean XXZ model, found to be
oscillatory (for �< 1), with an envelope that decays expo-
nentially in time [16].

Next, to gain information on particle transport and ther-
malization, we compute the growth of the total particle
number fluctuation and of the entanglement entropy in a
subsystem consisting of half the chain. Each decimated
pair has a conserved integer particle number in the RG
scheme. Therefore, only decimated pairs that cut the inter-
face between the two half chains contribute to the particle
number fluctuation in the subsystem. Such oscillating pairs
add 1=8 to the number fluctuation on time average.
Computing the total particle number fluctuation then
amounts to counting the number of decimated bonds that
cut the interface [17]: Np � R

� d�0að�0Þ ¼ lnð�þ 1=a0Þ.
Hence, the particle number fluctuation grows extremely
slowly as h�N2i ¼ ð1=24Þ ln½lnð�0tÞ� at long times.
Interestingly, this result is independent of the interaction
strength �.

On the other hand, we shall see that the interaction has a
dramatic effect on the growth of the entanglement entropy
between the two halves. In the noninteracting system
(�i ¼ 0), the second line of (2) is zero and hence no
entanglement is generated between a decimated pair and
the rest of the chain. As for the particle number fluctuation,
the only source of entanglement then is decimated pairs
whose spins reside on opposite sides of the interface.
During an oscillation period, such a pair contributes a
time average of Sp ¼ 2� 1= ln2 � 0:557. The growth of

the entropy is then similar to that of the particle number
fluctuation:

S0ðtÞ � Sp
1

3
ln½lnð�0tÞ þ 1=a0�: (7)

We can generalize this result (for�i ¼ 0) to a quench from
an arbitrary Ising state with a fraction q of antialigned

neighbors. Because q is an invariant of the RG and aligned
pairs do not contribute to the entropy, the prefactor in (7)
changes to qSp.

Interactions lead to a new source of entanglement. A pair
decimated at time t1 will eventually get entangled with the
neighboring spins according to Eq. (2) after a characteristic
time tentðt1Þ ¼ 2�1=ðJ21�1Þ. In particular, from t ¼ 0
entanglement will be generated by interactions only after
a delay time tdelay ¼ 2�0=ðJ20�0Þ ¼ 2ð�0=J0Þð1=Jz0Þ,
where Jz0 � J0�0 is the typical value of the bare interaction

energy.
The interaction-generated entanglement entropy found

at time t originates from entanglement of pairs eliminated
at an earlier time t1 ¼ t� tent or �1 ¼ ln�0t1. To estimate
this contribution to the entropy, we recall that spins on the
renormalized chain at time t1 are separated by clusters of
length Lð�1Þ of decimated spins oscillating at higher fre-
quencies. By the time t that a pair of spins decimated at t1
entangles with their neighbors, the pseudospins inside the
decimated clusters must also be entangled with each other.
Hence, by the observation time t entanglement had propa-
gated to a distance Lð�1Þ giving rise to entanglement
entropy S � 0:5Lð�1Þ � 0:5ða0�1 þ 1Þ2. The factor 0.5
stems from the number of available degrees of freedom:
the two states with aligned spins in each decimated pair
remain unpopulated and therefore do not contribute to the
entropy. To write this as a function of the time t, we use the
relation between t and t1:

t ¼ t1 þ tent ¼ t1

�
1þ 2�2

1

JLJR�1

�
� t1

2�2
1

JLJR�1

: (8)

We now take the logarithm of both sides and replace the
scaling variables by their appropriate average values � !
1=að�1Þ and �1 ! ��ð� ¼ 0; �1Þ. Note the importance of
correlations: we needed the average of � on the bonds with
strongest J (� ¼ 0) rather than the global average of �.
Using the solutions for að�Þ below (4) and (6), for

the typical values, we find � ¼ 3�1 þ 1
b0
ða0�1 þ 1Þ� þ

2=a0 þ ln2. By inverting this equation to obtain �1ð�Þ,
we can find Sð�Þ ¼ 0:5Lð�1ð�ÞÞ. In limiting regimes
the equation can be inverted analytically. At long times,

when the term ��
1 dominates the right-hand side, we have

a0�1¼½b0ð��2=a0� ln2Þ�1=��1, while at short times,
when the linear term dominates, we have �1 ¼
1
3 ð�� 2

a0
� 1

b0
� ln2Þ.

The crossover time t� separating the two regimes
depends on the initial conditions through the coefficients

of the terms �1 and ��
1 . If b0 � a0, that is for stronger

disorder in hopping than in the interactions, we have
t� ¼ tdelay exp½6ð3b0=a0Þ�=a0�. In the opposite regime

b0 	 a0, the term ��
1 dominates from the outset and

t� ¼ tdelay. We can now write an expression for the growth

of the entanglement entropy valid in the limiting regimes:

FIG. 1 (color online). Schematic illustration of remaining
spins and clusters of decimated pairs in the renormalized chain
at time t.
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SðtÞ � 1

2

�
lnðt=tdelayÞ
lnð�0=J0Þ þ 1

�
2
�ðt� tdelayÞ�ðt� � tÞ

þ 1

2

�
lnðt=tdelayÞ
lnð1=�0Þ þ 1

�
2=�

�ðt� t�Þ � 1

2
: (9)

Interestingly, Eq. (9) gives the unbounded logarithmic
growth of the entanglement entropy seen in the numerical
simulations, and even the delay of this interaction induced
growth by a time that scales as the inverse interaction
strength [9]. Also consistent with these simulations is the
much slower (
 lnlnt) increase of the particle number
fluctuation found in the RG approach. Indeed, the particle
number fluctuations are in general only a lower bound
of the entanglement entropy [18]. One cannot, however,
make a detailed comparison with the numerics done for a
somewhat different model including on-site Zeeman field
disorder (but see the Supplemental Material [19]).

Having found that the entanglement entropy increases
without bound, it is natural to ask if this leads to thermal-
ization. To address this issue let us consider the saturation
of the entanglement entropy in a finite subsystem of
length Ls. Equation (9) implies that the entropy will

approach its maximal value S1 after a time tsat �
tdelay exp½� lnð�0ÞL�=2

s �. Does the saturation value S1 cor-

respond to a state in thermal equilibrium?
Provided we start from a symmetric distribution of �i

such that h�ii ¼ 0, then the initial Néel state has zero mean
energy, exactly in the middle of the many-body energy
spectrum. If this state thermalized following the quench,
the entanglement entropy would have to saturate to its
infinite temperature value of L. But as we have pointed
out above, the RG flow implies a saturation entropy that is
at most half of the infinite temperature value because half
of the degrees of freedom remain frozen in the dynamics.

We can rephrase this fact more precisely in terms of
local conservation laws. For each decimated pair we iden-
tify an integral of motion Ip ¼ ðSz1Sz2Þp. Conservation of Ip
reflects the fact that within the perturbative RG scheme
a pair of decimated spins never flip their relative orienta-
tion. In the case of an initial Néel state we also have a
local particle conservation on each oscillating pair, i.e.,
ðSz1 þ Sz2Þp. Although these are approximate conservation

laws, they become asymptotically exact near the infinite
randomness fixed point. Given any long observation time t,
there are always an infinite number of quantities that are
conserved for a time longer than t. It is plausible to con-
jecture that there are in fact exact integrals of motion
related to the approximate local ones up to exponentially
small long-range tales. We conclude that the long time
steady state of the chain with nonvanishing interaction is
characterized by the generalized Gibbs ensemble (GGE)
[20], which describes thermalization within a subspace
constrained by the values of the emergent integrals of
motion Ip.

It is important to note that the long time steady state
attained by the noninteracting system �i ¼ 0 is markedly
different. The extremely slow increase of the entanglement
entropy as lnlnt given by Eq. (7) together with the relation

between length and time scales ln�0t ¼ �
 ffiffiffiffi
L

p
imply

saturation of the entanglement entropy to S1 � Sp
6 lnL.

This result, as well as the lnlnt growth of the entropy,
matches with numerical results obtained for the random
transverse field Ising chain [21] that can be similarly
described by a model of free fermions.
Conclusion.—Using a real space RG scheme formulated

in real time, we gave a dynamical description of a many-
body localized state in a random spin chain, equivalent to
interacting fermions with random hopping. Within this
approach the localized state is characterized by a flow to
an infinite randomness fixed point. Solution of the flow
equations allows us to characterize this state in a rather
detailed way. The results are consistent with and explain
the universal features found in recent numerical simula-
tions done on a similar, albeit not identical, model [9].
Particle localization is manifest in the extremely slow

growth 
 lnlnt of the particle number fluctuations in half
the system that is seen in both the interacting and non-
interacting systems. The entanglement entropy S reveals a
dramatic difference between the Anderson localized state
of noninteracting fermions and the many-body localized
state established with interactions. In the noninteracting
system S grows together with the particle number fluctua-
tion as SðtÞ 
 loglogt and saturates to a nonextensive value

 lnL in a finite system. Interactions lead to much faster

growth of SðtÞ as log2=�t at long times, but they take effect
only after a delay time that scales as the inverse of
the interaction strength tdelay 
 1=Jz. Furthermore, the

log2=�t behavior seen in the long time limit is preceded
by logt growth up to an intermediate time scale tlin 

tdelayð�0=J0Þ2 � tdelay. It is interesting to note that the

growth of entanglement as ln2=�t exceeds the upper bound

 lnt proved for noninteracting Anderson localized
chains [22].
The RG flow toward the infinite randomness fixed point

has direct consequences on the equilibration in this system.
In a subsystem of length L the entanglement entropy
saturates to an extensive value S1 
 L, which is, however,
smaller than it would reach had the system attained true
thermal equilibrium. We attribute the lack of thermaliza-
tion to an infinite set of emergent integrals of motion,
which become asymptotically exact conservation laws
near the infinite randomness dynamical fixed point. The
dynamics of the system can therefore be viewed as ther-
malization within a GGE characterized by the emergent
set of conserved quantities, a possibility suggested in
Refs. [23,24], Here we demonstrated that such a GGE
emerges in a nonintegrable random system as a dynamical
fixed point of the renormalization group and captures the
essence of a many-body localized state. The nature of the
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critical point marking the transition to the normal thermal-
izing state remains an interesting question for future study
as are generalizations of our scheme to more generic dis-
order models and initial states.

Before closing, we remark that the RG scheme does not
account for resonances occurring between decimated pairs
located far from each other on the chain. Processes that can
resonantly change the values of the conserved operators Ip
on the two pairs and thus lead to delocalization are poten-
tially dangerous. However, a simple argument given in the
Supplemental Material [19] shows that these are irrelevant
near the infinite randomness fixed point. A more detailed
analysis of resonances will be provided elsewhere [25].

We thank J. E. Moore, F. Pollmann, D. Huse, V.
Oganesyan, G. Refael, and A. Polkovnikov for useful
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Minerva foundation, and the NSF Grant No. PHY11-
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064426 (2008).

[9] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev.
Lett. 109, 017202 (2012).

[10] C. Dasgupta and S.-k. Ma, Phys. Rev. B 22, 1305 (1980).
[11] R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344

(1982).
[12] D. S. Fisher, Phys. Rev. B 50, 3799 (1994).
[13] D. S. Fisher, P. Le Doussal, and C. Monthus, Phys. Rev.

Lett. 80, 3539 (1998).
[14] T. E. Lee, G. Refael, M. C. Cross, O. Kogan, and J. L.

Rogers, Phys. Rev. E 80, 046210 (2009).
[15] L. Mathey and A. Polkovnikov, Phys. Rev. A 81, 033605

(2010).
[16] P. Barmettler, M. Punk, V. Gritsev, E. Demler, and E.

Altman, New J. Phys. 12, 055017 (2010).
[17] G. Refael and J. E. Moore, Phys. Rev. Lett. 93, 260602

(2004).
[18] I. Klich, G. Refael, and A. Silva, Phys. Rev. A 74, 032306

(2006).
[19] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.110.067204 for a gen-
eralization to an arbitrary initial Fock state (for � ¼ 0),
comparison with numerical simulations, and an argument
which shows that resonances are unimportant.

[20] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)
452, 854 (2008).
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