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In compressible turbulence at high Reynolds and Mach numbers, shocklets emerge as a new type of

flow structure in addition to intense vortices as in incompressible turbulence. Using numerical simulation

of compressible homogeneous isotropic turbulence, we conduct a Lagrangian study to explore the effects

of shocklets on the dynamics of passive tracers. We show that shocklets cause very strong intermittency

and short correlation time of tracer acceleration. The probability density function of acceleration

magnitude exhibits a �2:5 power-law scaling in the high compression region. Through a heuristic model,

we demonstrate that this scaling is directly related to the statistical behavior of strong negative velocity

divergence, i.e., the local compression. Tracers experience intense acceleration near shocklets, and most

of them are decelerated, usually with large curvatures in their trajectories.
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Compressible fluid turbulence has proven to be a key
phenomenon in many natural environments and engine-
ering flows, including star formation from interstellar gas
[1], inertial confinement fusion [2], and hypersonic
aircraft. One interesting problem is the motion of particles
in those flows, which is crucial to understanding transport
and mixing in turbulence [3–5]. The Lagrangian investi-
gation has attracted increasing interest, and it has
significantly advanced our knowledge of turbulence. For
incompressible flow, it is now possible to track large
numbers of particles simultaneously; see Ref. [6] and
references therein. Experimental and numerical results
have revealed that particle acceleration exhibits strong
intermittency that is primarily caused by intense vortex
filaments [7–9], and up to 40 times the root mean square
(rms) value has been observed [10]. The probability den-
sity function (PDF) of acceleration magnitude obeys a log-
normal distribution [11].

However, it is very difficult to track particles in experi-
ments with compressible turbulence. Numerical simulation
serves as the major tool for Lagrangian study. Some efforts
have been made to develop the Lagrangian numerical
simulation [12–14] and to explore the mass distribution
in isothermal flow [15,16] and the alignment dynamics
for isentropic compressible magnetohydrodynamics [17].
Recently, the passive tracer has been used in a compress-
ible turbulence simulation to investigate pair dispersion
and mixing in the cosmic intracluster medium [18]. The
Lagrangian investigation of passive tracers has also been
used to explore the difference between solenoidal and
compressive forcing for an isothermal ideal gas flow
[19]. In this Letter, we focus on the effects of shocklets
on the dynamics of passive tracers, particularly their ac-
celeration, using three-dimensional compressible viscous
turbulent flow.

We simulate three-dimensional compressible turbulence
in a periodic box of width 2�. A novel hybrid numerical
method with a resolution of 5123 is used [20]. After the
flow reaches a statistically steady state, a million passive
tracers are seeded uniformly into the flow domain. The
dynamic equations for a passive tracer in dimensionless
form are given by

_xðtÞ ¼ uðx; tÞ; (1)

_u ¼ a ¼ � 1

��M2
rpþ 1

�Re
r � �þF ; (2)

where x, u, and a denote the location, velocity, and accel-
eration of the tracer, respectively; � is local density; p is
pressure; � is the viscous stress tensor; and � is the ratio
of specific heat at constant pressure to that at constant
volume. A dot stands for the Lagrangian or material de-
rivative. The Mach number M ¼ U=c is defined as the
ratio of velocity to the speed of sound. The Reynolds
number Re is equal to �UL=� with L being the length
and � the dynamic viscosity. The three terms on the right-
hand side of (2) represent the accelerations due to the
pressure gradient, viscous stress, and external driving
force, respectively.
In order to track the tracer, Eq. (1) is solved by using

the second-order Runge-Kutta method. The physical quan-
tities of the tracer are calculated by a trilinear interpolation
to avoid unphysical oscillations near shocklets. Recent
studies suggest that the Kolmogorov phenomenology
can be extended to compressible turbulence [21–23].

Thus we may define the viscous scale � ¼ ð�3=�Þ1=4 and

the Kolmogorov time 	� ¼ ð�=�Þ1=2, where � is the kine-

matic viscosity and � is the energy-dissipation rate per unit
mass. To accurately track tracers, we set the grid size to be
dx � 0:96� and update locations every 	�=100. The total
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integration time is about 10TE, where TE is the large
eddy turnover time. We compute the Lagrangian statistics
during the last 8TE with a sampling interval of 	�=10.

The resulting turbulent Mach number MT¼urms= �c�1:03.
Hereafter, the subscript ‘‘rms’’ denotes the root mean
square value, and the overline represents the average over
all particles and time. The Reynolds number based on the
Taylor microscale Re
 is about 153. The Lagrangian inte-
gral time scale TL, which is defined by the integral of the
velocity autocorrelation, is about 1.07. For comparison, TE

is about 1.1 and 	� about 0.063.

We use the dilatation � ¼ r � u to identify the flow
region with different local compression. A large negative
� indicates strong compression. In order to isolate the
compression effect, we decompose the entire flow domain
into three regions: (a) the compression region with
� <��nrms, (b) the smooth region with ��nrms<�<�prms,
and (c) the expansion region with � > �prms. Here �nrms and
�prms are the rms values computed from negative and posi-
tive � of the Eulerian field, respectively.

A major difference between compressible and incom-
pressible flow is the appearance of shocklets [20,24]. In
Fig. 1(a), we show instantaneous volume renderings of two
different types of flow structures, i.e., sheetlike shocklets
and tubelike vortices. In the same figure, we also place
several typical particle trajectories near those flow struc-
tures. An immediate observation is that tracers change their

directions abruptly when they cross the shocklets, as shown
in Fig. 1(b). Away from the shocklets, tracers may rotate
around the intense vortices, as shown in Fig. 1(c). Thus, for
compressible turbulence the shocklet is a new source of
extreme acceleration other than intense vortices.
The two different types of tracer motion caused by

shocklets and vortices together determine the time dynamics
of acceleration. Figure 2 shows the Lagrangian autocorrela-
tions of acceleration magnitude a and three Cartesian

components ai with i ¼ 1, 2, 3, which are defined as R¼
a0ðtÞa0ðtþ	Þ=a2rms. Here, a

0ðtÞ ¼ aðtÞ � �a. The curves of
the incompressible flow from Ref. [11] are also shown
for comparison. Autocorrelations in the compressible case
decay much faster than those in the incompressible case,
which may be attributed to the shocklets.
Furthermore, we have calculated the autocorrelation

coefficients near different flow structures. For shocklets,

Rs ¼ ha0ð0Þa0ð	Þi=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiha0ð0Þ2ip ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiha0ð	Þ2ip Þ. Here, h�i repre-
sents the ensemble average over all possible time intervals
0< 	< 	�, during which � has a local minimum that is

smaller than��nrms. R
v is calculated with the same formula

for all time intervals 0< 	< 5	�, during which tracers

stay in the smooth vortical region with ��nrms < �< �prms.
Acceleration decorrelates much faster near shocklets than
near vortices. When tracers move through shocklets, they
experience extremely high acceleration during a short
period, as shown in inset (a) in Fig. 3. The peak value is
much bigger than the average over the entire domain.
Naturally, the autocorrelation coefficients will quickly
decay when 	 is larger than the width of the acceleration
burst. Figure 3 indicates that Rs of magnitude drops to
around 0.5 at 	 ¼ 0:1	�. R

s of magnitude decays slightly

faster than those of the components, since shocklets induce
only large acceleration normal to the shock surface and
have little effect on the tangential component. The curves
in the vortical region are very similar to those of incom-
pressible flow reported in Ref. [11]. Rv of components

(a)

(b) (c)

FIG. 1 (color online). (a) Instantaneous rendering of shocklets
(dark brown sheetlike surface) and vortices (light gray tubelike
surface), with typical tracer trajectories. (b) Tracers changing
direction near a shocklet. (c) Tracers rotating around a vortex.
Trajectories start from the near (blue) ends and last for a time
period of 10	�.
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FIG. 2 (color online). The autocorrelation coefficients of ac-
celeration magnitude a (black line) and components ai (lines
with symbols), compared to the autocorrelations of magnitude
(dotted line) and one component (dashed line) of an incompress-
ible flow (reproduced from Ref. [11]).
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cross zero at around 2:3	�. The ensemble average and rms

of a remain nearly constant when tracers are trapped by
vortices, as shown in inset (b) in Fig. 3.

In Fig. 4, we show the total PDF of acceleration magni-
tude and the PDFs in the three different regions. For large
a, the total PDF curve overlaps with that of the compres-
sion region, which implies that the extreme acceleration
events are all detected near the shocklets. For small a,
the smooth and expansion regions contribute to the major
portion of the total PDF. The expansion region, which is
often located closely downstream from the shocklets, does
not induce very large acceleration. As shown in inset (a) in
Fig. 4, the PDF curve of the smooth region matches the log-
normal distribution with a variance of 1, as proposed for
incompressible turbulence by Refs. [11,25]. This implies
that, in the low-dilatation region of compressible turbu-
lence, the tracer acceleration behaves similarly to that in
incompressible turbulence.

The curve of the compression region develops a a�2:5

power law in the PDF tail; see inset (b) in Fig. 4. It has been
found that in the shocklet region, the � PDF also follows the
�2:5 power law [26]. Figure 5 shows the joint PDF of a and
�, Pða; �Þ. A distinct ridge exists in the negative � region.

We also plotted the PDF quotient Q ¼ Pða;�Þ
PðaÞPð�Þ [27], which

measures the correlation between a and �.Q equals unity if
a and � are independent.Q> 1 (Q< 1) represents positive
(negative) correlation. The contours immediately suggest
that a large acceleration is very likely accompanied by a
largemagnitude of�, which usually happens near shocklets.
The strong correlation between the large acceleration

and strong compression may be explained as follows. Let
us denote the three principle axes of the strain-rate tensor
by ei with i ¼ 1, 2, 3, which are associated with the
eigenvalues sorted in descending order. Near strong shock-
lets, the compression occurs mainly in the e3 direction.
Without losing generality, we set e3 to point from upstream
of the shocklet to downstream. Then, the velocity diver-
gence can be approximated by � � ðw2 � w1Þ=dl, where
w1 and w2 are the velocity components in the e3 direction
upstream and downstream of shocklet, respectively, and dl
is the shock thickness. It is reasonable to assume that the
time scale of shocklet evolution is much longer than the
time it takes a tracer to cross the shock region. Therefore,
tracer acceleration can be calculated approximately as a �
jw2 � w1j=dt, where dt is the time for a tracer to travel
through a shocklet. Immediately, one has a � j�jdl=dt ¼
j�jun, where un can be treated as the normal velocity with
which the tracer moves through a shocklet.
Using the above model, we can compute the PDF of a

from that of �. In shocklets region the � PDF has power-
law scaling at � < 0, i.e., fj�j � j�j� with � � �2:5 [26].

Our numerical results have indicated that un is statistically
independent of � and has a quasi-Gaussian distribution,
which we denote as fun . Then, by the algebra of random

variables, we have

faðaÞ �
Z

funðunÞða=unÞ�u�1
n dun ¼ Ca�: (3)

Thus, the a PDF must have the same power-law scaling as
the � PDF, which is exactly what we found in our
simulation.
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FIG. 3 (color online). Autocorrelation coefficients Rs (left
bunch) and Rv (right bunch), with the same line style as

Fig. 2. The insets show hað	Þi= �a and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiha0ð	Þ2ip

=arms with solid
and dashed lines, respectively. (a) Near shocklets and (b) trapped
by vortices.
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FIG. 4 (color online). Log-linear plots of the PDFs of accel-
eration magnitude a in three flow regions, normalized by the
total number of data points. Black solid line: all tracers; red
dotted line: the compression region; green dashed line: the
smooth region; and blue dash-dotted line: the expansion region.
Inset (a), Log-normal distribution in the smooth region; and
inset (b),�2:5 power-law distribution in the compression region.
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FIG. 5 (color online). (a) Logarithm of the joint PDF Pða; �Þ.
(b) Logarithm of the PDF quotient Qða; �Þ.
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To further understand the tracer motion near shocklets,
we decompose the acceleration into a longitudinal compo-
nent aL ¼ a � u=juj and a transverse component aT ¼
a� aLu=juj. Evidently, aL determines the time-changing
rate of the velocity magnitude. aT is directly linked to the
curvature of tracer trajectory, which will be discussed later.
The PDFs of aL are plotted in Fig. 6. The curve of the
smooth region is symmetric about aL ¼ 0, which is the
same as in our incompressible results (not shown here).
The PDF of the expansion region shows slight asymmetry,
and the peak is located at a very small positive value. The
PDF of the compression region has very strong asymmetry,
and the left tail is much longer than the right one. In the
compression region, the negative pressure gradient�rp is
basically perpendicular to the shocklet surface pointing
upstream and in the direction of acceleration according to
(2). We investigated the cosine of the angle 
 between the
velocity u and negative pressure gradient �rp. The PDF
of cos
 in the compression region is plotted in the inset in
Fig. 6. It has a peak at cos
 ¼ �1 (solid line), which
means that tracers are most likely to hit shocklets vertically
from upstream. For most decelerated tracers, cos
< 0
(dotted line), and they move against the shocklets. Some
tracers are accelerated near shocklets with cos
> 0
(dashed line). Basically, these tracers are overtaken by
shocklets. Numerical results show that the ratio of the
numbers of decelerated tracers to accelerated ones is 7:1
for the present case.

We now focus on the curvature of tracer trajectory,
which is directly related to the transverse acceleration aT
by � � jaTj=u2 [27]. Near shocklets, the total acceleration
is very likely perpendicular to the shock surface. When a
tracer moves obliquely through such structures, it under-
goes strong transverse acceleration, and its trajectory may
have a very large curvature in these regions. The PDFs of �
in different regions are plotted in Fig. 7. At the present

Reynolds and Mach numbers, the peak of total PDF is
located at �� � 5:8� 10�3, which is very close to that
of incompressible flow [27]. The two tails of all PDF
curves exhibit the same power laws as the incompressible
case [27]. This is to be expected, because the extremely
small and large curvatures are associated with the statisti-
cal behavior of aT as aT ! 0 and 1=u2 as u ! 0. The
insets show that the 1=u2 PDF is almost the same for the
three different regions, and the compressibility only shifts
the PDF of aT toward a larger value. Consequently, the �
PDF of the compression region also shifts toward a larger
curvature value. The peak of PDF in the compression
region is located at �� � 2:4� 10�2. We believe that,
for a higher Mach number, this PDF curve would move
even farther into the larger curvature region.
In conclusion, we present several significant effects of

shocklets on the dynamics of passive tracers in compress-
ible turbulence. Shocklets induce very large acceleration in
a very short time period and therefore quickly decorrelate
the acceleration magnitude and components. The PDF of
acceleration magnitude in the compression region obeys a
�2:5 power-law scaling, which is directly related to the
PDF of negative �. Most tracers move through shocklets
from upstream, during which they experience obvious
deceleration and strong lateral acceleration due to the large
adverse pressure gradient. Meanwhile, large curvatures
appear in their trajectories. It is also found that a small
portion of tracers may be accelerated as they are overtaken
by shocklets. Even though the present study is based on
one single set of parameters, we infer that the main con-
clusions are still qualitatively applicable for higher Mach
and Reynolds numbers.
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