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A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair and an

infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering

data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit

breathing one soliton solution is found. Key properties are discussed and contrasted with the classical

nonlinear Schrödinger equation.
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Introduction.—In the study of nonlinear wave propaga-
tion exactly solvable models play an exceptional role.
There are many physically important integrable equations.
Examples include small amplitude waves in shallow water
where the Korteweg–de Vries (KdV) equation [1] and its
multidimensional analog, the Kadomtsev-Petviashvili
equation [2] arise; in generic weakly nonlinear dispersive
systems in the quasimonochromatic limit the integrable
cubic nonlinear Schrödinger equation [3] is applicable.
Furthermore, in nonlinear optics the integrable cubic non-
linear Schrödinger (NLS) equation is a key equation
describing optical wave propagation in Kerr media [4,5].
Indeed there are many physically significant integrable
systems [6] which apply to diverse problems in fluid
mechanics, electromagnetics, gravitational waves, elastic-
ity, fundamental physics, and lattice dynamics, to name
but a few.

Generally speaking, integrability is established once an
infinite number of constants of motion or an infinite num-
ber of conservation laws are obtained. However, consider-
ably more information about the solution can be obtained
if the inverse scattering transform (IST) can be carried out
[7]. Corresponding to rapidly decaying initial data, IST
provides a linearization and a class of explicit solutions,
i.e., solitons. The method associates a compatible pair of
linear equations (i.e., a Lax pair) with the integrable non-
linear equation. One of the equations, the scattering prob-
lem, is used to determine suitably analytic eigenfunctions
and transform the initial data to appropriate scattering data.
The other linear equation serves to determine the evolution
of the scattering data. Using the analytic behavior of the
eigenfunctions, an inverse scattering problem, or linear
Riemann-Hilbert (RH) problem, is constructed. With the
time dependence of the scattering data one can find the
solution of the nonlinear evolution equation from the in-
verse or RH problem. There are many books describing
the IST method; cf. [8–10].

In this Letter, the following nonlocal nonlinear
Schrödinger equation is introduced and investigated in
detail

iqtðx; tÞ ¼ qxxðx; tÞ � 2qðx; tÞq�ð�x; tÞqðx; tÞ; (1)

where � denotes complex conjugation and qðx; tÞ is a
complex valued function of the real variables x and t.
Equation (1) admits a linear (Lax) pair formulation and
possesses an infinite number of conservation laws; hence, it
is an integrable system. Via the inverse scattering trans-
form, corresponding to rapidly decaying initial data, one
can linearize the equation and obtain solutions to Eq. (1)
including pure solitons solutions. Some of the important
properties of the nonlocal NLS equation are contrasted
with the classical NLS equation where the nonlocal non-
linear term q�ð�x; tÞ is replaced by q�ðx; tÞ. Indeed, we
note that both Eq. (1) and the classical NLS share the
symmetry that when x ! �x, t ! �t and a complex con-
jugate is taken, then the equation remains invariant. Thus,
the new nonlocal equation is PT symmetric [11] which,
in the case of classical optics, amounts to the invariance of
the so-called self-induced potential, cf. [12], Vðx; tÞ ¼
qðx; tÞq�ð�x; tÞ under the combined action of parity and
time reversal symmetry. Finally, wave propagation in PT
symmetric coupled waveguides or photonic lattices has
been experimentally observed in classical optics [13–15].
Linear pair and the nonlocal NLS equation.—We

begin our analysis by considering the following scattering
problem [8,16]

vx ¼
�ik qðx; tÞ
rðx; tÞ ik

 !
v; (2)

vt ¼
A B

C �A

 !
v; (3)

where v is a two-component vector, vðx; tÞ ¼
ðv1ðx; tÞ; v2ðx; tÞÞT , qðx; tÞ and rðx; tÞ vanish rapidly as
x ! �1, k is a spectral parameter and A ¼ 2ik2 þ
iqðx; tÞrðx; tÞ, B¼�2kqðx; tÞ� iqxðx; tÞ, C¼�2krðx; tÞþ
irxðx; tÞ. The compatibility condition of system (2) and (3),
i.e., vxt ¼ vtx yields

iqtðx; tÞ ¼ qxxðx; tÞ � 2rðx; tÞq2ðx; tÞ; (4)
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�irtðx; tÞ ¼ rxxðx; tÞ � 2qðx; tÞr2ðx; tÞ: (5)

Equation (1) is then obtained from system (4) and (5) under
the symmetry reduction

rðx; tÞ ¼ �q�ð�x; tÞ: (6)

Importantly, the symmetry reduction (6) is new and leads
to a new class of nonlocal integrable evolution equations
including a nonlocal NLS hierarchy. This is a special and
remarkably simple reduction of a more general system [7]
which has not been previously found.

Infinite number of conserved quantities and conserva-
tion laws.—The infinite number of conserved quantities
of (1) can be derived as follows. We assume that qðx; tÞ
decays rapidly at infinity. Then solutions of the scattering
problem (2) can be defined. Indeed, we define four eigen-
functions which satisfy the following boundary conditions

�� 1

0

 !
e�ikx; ��� 0

1

 !
eikx; as x ! �1;

c � 0

1

 !
eikx; �c � 1

0

 !
e�ikx; as x ! þ1:

(7)

Note that �� is not the complex conjugate of �. We use ��
to denote complex conjugation of �. If �ðx; tÞ ¼
ð�1ðx; tÞ; �2ðx; tÞÞT is the solution to (2) that satisfies the
above boundary conditions then, for Im k � 0, �1ðx; tÞeikx
is analytic and approaches 1 as x ! �1. Substituting
�1ðx; tÞ ¼ exp½�ikxþ ’ðx; tÞ� into (2) we find (after
eliminating �2) that the function �ðx; tÞ � ’xðx; tÞ satis-
fies the Riccati equation

q
@

@x

�
�

q

�
þ�2 � qr� 2ik� ¼ 0: (8)

For Imk > 0, limjkj!1’ðx; kÞ ¼ 0. Substituting the expan-

sion �ðx; kÞ ¼ P1
n¼0 �nðx; tÞ=ð2ikÞnþ1 into (8) to find

�0 ¼ �qr, �1 ¼ �qrx and a recursion relation for any
n � 1 cf. [8]. From (2) it follows that the scattering data
aðkÞ � limx!þ1�1ðx; tÞeikx is time independent. Since
’ðx; tÞ vanishes as x ! �1 we conclude that Cn �Rþ1
�1�nðx; tÞdx are time independent and constitute an

infinite number of constants of motion. The first few global
conservation laws are listed below (here � ¼ �1):

C0 ¼
Z þ1

�1
qðx; tÞq�ð�x; tÞdx;

C1 ¼
Z þ1

�1
½qxðx; tÞq�ð�x; tÞ þ qðx; tÞq�xð�x; tÞ�dx;

C2 ¼
Z þ1

�1
½qxðx; tÞq�xð�x; tÞ � �q2ðx; tÞq�2ð�x; tÞ�dx:

In the context of PT symmetric classical optics, the quan-
tity C0 is referred to as the ‘‘quasipower.’’ We also note
that Eq. (1) is an integrable Hamiltonian system with
Hamiltonian given by C2. The local conservation laws
(both densities and fluxes) can also be derived from the

linear pair. They are given by @t�nðx; tÞ þ i@xFnðx; tÞ ¼ 0

where the fluxes are Fnðx; tÞ ¼ qxðx;tÞ
qðx;tÞ �nðx; tÞ ��nþ1ðx; tÞ,

n ¼ 0; 1; 2; . . . . The first two local conservation laws are

@t½qðx; tÞq�ð�x; tÞ� þ i@x½qðx; tÞq�xð�x; tÞ
þ q�ð�x; tÞqxðx; tÞ� ¼ 0;

@t½qðx; tÞq�xð�x; tÞ� þ i@x½q�xð�x; tÞqxðx; tÞ
þ qðx; tÞq�xxð�x; tÞ � �q2ðx; tÞq�2ð�x; tÞ� ¼ 0:

Direct scattering problem.—We define the functions
Mðx; kÞ ¼ eikx�ðx; kÞ, �Mðx;kÞ¼e�ikx ��ðx;kÞ andNðx;kÞ¼
e�ikxc ðx;kÞ, �Nðx; kÞ ¼ eikx �c ðx; kÞ satisfying constant
boundary conditions induced from (7). One can then obtain
an integral representations for the above functions and
show that Mðx; kÞ, Nðx; kÞ are analytic functions in the
upper half complex plane whereas �Mðx; kÞ, �Nðx; kÞ are
analytic functions in the lower half complex plane [16].
The solutions�ðx; kÞ and ��ðx; kÞ of the scattering problem
(2) with the boundary conditions (7) are linearly inde-
pendent. This follows from the fact that the Wronskian,
Wðu; vÞ � u1v2 � u2v1 of any two solutions u and v to (2)
is independent of x. Similar arguments hold for c ðx; kÞ and
�c ðx; kÞ. Therefore, because the scattering problem (2) is a
second order linear ODE, the pairs f�; ��g and fc ; �c g are
linearly dependent and one can express one set of basis in
terms of the other:

�ðx; kÞ ¼ SðkÞ�ðx; kÞ; (9)

where�ðx;kÞ�ð�ðx;kÞ; ��ðx;kÞÞ,�ðx;kÞ�ð �c ðx;kÞ;c ðx;kÞÞ
and SðkÞ is the scattering matrix

SðkÞ ¼ aðkÞ bðkÞ
�bðkÞ �aðkÞ

 !
: (10)

Then the scattering data are expressed as aðkÞ ¼
Wð�ðx; kÞ; c ðx; kÞÞ, �aðkÞ¼Wð �c ðx;kÞ; ��ðx;kÞÞ, bðkÞ¼
Wð �c ðx;kÞ;�ðx;kÞÞ, �bðkÞ ¼ Wð ��ðx; kÞ; c ðx; kÞÞ. Moreover,
it can be shown that aðkÞ, �aðkÞ are, respectively, analytic
functions in the upper or lower half complex plane. In
general, bðkÞ, �bðkÞ need not be analytic anywhere. As stated
above, the nonlocal NLS equation (1) is a special case of
the system (4) and (5) under the symmetry reduction
rðx; tÞ ¼ �q�ð�x; tÞ. This symmetry in the potential
induces a symmetry in the eigenfunctions that in turn
imposes a symmetry in the scattering data. Indeed, if
ð�1ðx;kÞ;�2ðx;kÞÞT satisfies Eq. (2) and the symmetry (6)
holds, then ð��

2ð�x;�k�Þ;���
1ð�x;�k�ÞÞT also satisfies

the scattering problem (2). A similar symmetry result holds
for ��ðx; kÞ. Therefore, because the solutions of the scattering
problem (9) are uniquely determined by their respective
boundary conditions (7) we obtain the important symmetry
relations valid for rðxÞ ¼ �q�ð�xÞ
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Nðx; kÞ ¼ �M�ð�x;�k�Þ;
�Nðx; kÞ ¼ ��1 �M�ð�x;�k�Þ;

(11)

where � is a 2	 2 matrix with zeros on the main diagonal
and 1, �1 on the lower and upper diagonal, respectively.
From the Wronskian representations for the scattering data
it follows aðkÞ ¼ a�ð�k�Þ, �aðkÞ ¼ �a�ð�k�Þ and �bðkÞ ¼
�b�ð�k�Þ. These relations imply that if kj is a zero (eigen-

value) of aðkÞ then�k�j is a zero of aðkÞ. Similarly, if �kj is a

zero of �aðkÞ so is� �k�j . In what follows, we assume that the

eigenvalues k‘, �k‘ are only on the imaginary axis.
Inverse scattering problem: Left-right RH approach.—

The inverse problem consists of constructing the poten-
tial functions rðx; tÞ and qðx; tÞ from the scattering data

(reflection coefficients) �ðk; tÞ ¼ e�4ik2tbðk; 0Þ=aðk; 0Þ and
��ðk; tÞ ¼ e4ik

2t �bðk; 0Þ= �aðk; 0Þ defined on Imk ¼ 0 as well
as the eigenvalues kj, �kj and norming constants (in x)CjðtÞ,
�CjðtÞ. Hereafter, for simplicity of notation, we suppress

the time dependence. Using the RH approach, from Eq. (9)
one can find equations governing the eigenfunctions
Nðx; kÞ, �Nðx; kÞ

�Nðx; kÞ ¼ 1

0

 !
þXJ

j¼1

Cje
2ikjxNðx; kjÞ
k� kj

þ 1

2�i

Z þ1

�1
�ð�Þe2i�xNðx; �Þ
� � ðk� i0Þ d�; (12)

Nðx; kÞ ¼ 0

1

 !
þX�J

j¼1

�Cje
�2i �kjx �Nðx; �kjÞ
k� �kj

� 1

2�i

Z þ1

�1
��ð�Þe�2i�x �Nðx; �Þ
� � ðkþ i0Þ d�: (13)

The time evolution of the norming constants are given

by CjðtÞ ¼ Cjð0Þe�4ik2j t, �CjðtÞ ¼ �Cjð0Þe4i �k2j t. To close the

system we substitute k ¼ �k‘ and k ¼ k‘ in (12) and (13),
respectively, and obtain a linear algebraic integral system
of equations that solve the inverse problem for the
eigenfunctions Nðx; kÞ and �Nðx; kÞ. To account for the
symmetry condition (6), we view system (9) as a left
scattering problem; we supplement it with the right
scattering problem

�ðx; kÞ ¼ SðkÞ�ðx; kÞ; (14)

where

SðkÞ ¼ ��ðkÞ ��ðkÞ
�ðkÞ �ðkÞ

 !
: (15)

In the same way as for the left RH above, we can formulate
the corresponding RH problem on the right and find the
following linear integral equations which govern the func-
tions Mðx; kÞ, �Mðx; kÞ:

Mðx; kÞ ¼ 1

0

 !
þ X�J

‘¼1

�B‘e
2i �k‘x �Mðx; �k‘Þ
k� �k‘

� 1

2�i

Z 1

�1

�Rð�Þe2i�x �Mðx; �Þ
� � ðkþ i0Þ d�; (16)

�Mðx; kÞ ¼ 0

1

 !
þ XJ

‘¼1

B‘e
�2ik‘xMðx; k‘Þ
k� k‘

þ 1

2�i

Z 1

�1
Rð�Þe�2i�xMðx; �Þ

� � ðk� i0Þ d�; (17)

where RðkÞ ¼ �ðkÞ=�ðkÞ and �RðkÞ ¼ ��ðkÞ= ��ðkÞ are the
reflection coefficients. The time evolution of the norming

constants (in x) are given by B‘ðtÞ ¼ B‘ð0Þe4ik2‘t, �B‘ðtÞ ¼
�B‘ð0Þe�4i �k2

‘
t. From the symmetry relation (11) it follows

that B‘ ¼ �C�
‘ and

�B‘ ¼ � �C�
‘. Using the relation between

the two scattering matrices, i.e., SðkÞ ¼ S�1ðkÞ we find
R�ð�kÞ ¼ ��ðkÞ and �R�ð�kÞ ¼ � ��ðkÞ, k is real. To close
the systemwe substitute k ¼ kj and k ¼ �kj in (16) and (17),

respectively, and obtain a linear algebraic integral system
of equations that solve the inverse problem for the eigen-
functionsMðx; kÞ, �Mðx; kÞ. It is also interesting to note that
at the eigenvalues k‘, �k‘ the eigenfunctions satisfy the
relation

N2ðx; k‘ÞN�
2ð�x; k‘Þ ¼ N1ðx; k‘ÞN�

1ð�x; k‘Þ; (18)

�M2ðx; �k‘Þ �M�
2ð�x; �k‘Þ ¼ �M1ðx; �k‘Þ �M�

1ð�x; �k‘Þ: (19)

Recovery of the potentials.—To reconstruct the poten-
tials qðxÞ, rðxÞ we compare the asymptotic expansions of
Eqs. (12) and (13) to that of �Mðx; kÞ, �Nðx; kÞ, Mðx; kÞ,
Nðx; kÞ at large k and use the symmetry relation (11)
between the eigenfunctions to find

rðxÞ ¼ �2i
XJ
j¼1

Cje
2ikjxN2ðx; kjÞ

þ 1

�

Z þ1

�1
�ð�Þe2i�xN2ðx; �Þd�; (20)

qðxÞ ¼ �2i
XJ
‘¼1

C�
‘e

2ik�
‘
xN�

2ð�x; k‘Þ

� 1

�

Z 1

�1
��ð�Þe2i�xN�

2ð�x; �Þd�: (21)

From Eqs. (20) and (21) it is now obvious that the sym-
metry rðxÞ ¼ �q�ð�xÞ is automatically preserved.
Soliton solutions.—In the case where the scattering data

only comprise eigenvalues off the real axis and �ðkÞ ¼ 0,
��ðkÞ ¼ 0 for all k, the inverse scattering system (12) and
(13) with (16) and (17) subject to the symmetry relations
(11) reduces to finite-dimensional linear algebraic equa-
tions for Nðx; kjÞ and �Mðx; �kjÞ. Recall that, when rðxÞ ¼
�q�ð�xÞ, the eigenvalues appear in pairs fkj;�k�j g and
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f �kj;� �k�j g. Thus, the one-soliton solution to the focusing

nonlocal NLS equation (1) (with a þ sign), corresponds
to a single pure imaginary eigenvalue (J ¼ �J ¼ 1) of the
form k1 ¼ i	1, �k1 ¼ �i �	1, 	1 � �	1 where 	1; �	1 > 0.
Using Eqs. (18) and (19) we also find jC1ð0Þj2 ¼
j �C1ð0Þj2 ¼ ð	1 þ �	1Þ2. Letting �C1ð0Þ ¼ j �c1jeið �
1þ�=2Þ and
C1ð0Þ ¼ jc1jeið
1þ�=2Þ, then the most general one-soliton
solution to Eq. (1) is given by

qðxÞ ¼ � 2ð	1 þ �	1Þei �
1e�4i �	2
1
te�2 �	1x

1þ eið
1þ �
1Þe4ið	2
1
� �	2

1
Þte�2ð	1þ �	1Þx : (22)

The family of solutions (22) is characterized by four inde-
pendent parameters that breathes in time and eventually
develops a singularity in finite time t ¼ ts at x ¼ 0 with

ts ¼ ð2nþ 1Þ�� 
1 � �
1
4ð	2

1 � �	2
1Þ

; n 2 Z: (23)

As pointed out earlier, the classical NLS equation is recov-
ered when the nonlocal nonlinear term q�ð�xÞ is replaced
by q�ðxÞ. In this regard, the one soliton solution for the
classical NLS equation is obtained from (22) by letting
�	1 ¼ 	1 and �C1ð0Þ ¼ �C�

1ð0Þ, i.e., 
1 þ �
1 ¼ 0.
A nonlocal NLS hierarchy.—In this section, we discuss a

class of nonlocal nonlinear evolution equations associated
with the AKNS scattering problem (2) that are integrable
and solvable by IST. Following closely the derivation
outlined in [8] we obtain

�3utðx; tÞ ¼ i!ð�2LÞuðx; tÞ; (24)

where, for example, !ð�Þ ¼ c�2n, n is a positive integer, c
is constant and

L � 1

2i

@x þ 2rIþq �2rIþr
2qIþq �@x � 2qIþr

 !
; (25)

where Iþ ¼ Rþ1
x dy is an integral operator. uðx; tÞ �

ðrðx; tÞ; qðx; tÞÞT and �3 � diagð1;�1Þ is a 2	 2 diagonal
matrix and rðx; tÞ ¼ �q�ð�x; tÞ. An example is the non-
local NLS equation (1) which is obtained from (24) by
choosing !ð�Þ ¼ ��2. Another example is the following
nonlocal evolution equation obtained from (24) using
the dispersion relation !ð�Þ ¼ �4 and taking rðx; tÞ ¼
�q�ð�x; tÞ:

iqt ¼ qxxxx � 2q
� 6ðqrqxÞx þ 6q3r2; (26)


 ¼ qrxx þ rqxx � qxrx: (27)

Note also, the function !ðkÞ is the dispersion relation
associated with the linear part of the evolution equation
under the substitution q� expðikx� i!tÞ.

Comparison with the classical NLS equation.—In this
part we briefly contrast the properties of the nonlocal
NLS (1) with that of the classical (local) NLS equation,

iut ¼ uxx � 2juj2u: (28)

Three different scenarios will be addressed all of which
concerning Eq. (28): (i) general and (ii) even initial con-
ditions posed on the whole real line and (iii) general initial
conditions on the semi-infinite interval ðx � 0Þ. In [3], it
was shown that (28) is integrable on the whole real line.
Furthermore, it was found that the symmetries of the
eigenfunctions of the associated Zakharov-Shabat scatter-
ing problem are such that the eigenfunctions in the upper
half complex plane are related to those in the lower half
plane. This is in sharp contrast to the nonlocal case where
the eigenfunctions defined in the upper and lower half
plane are not related. On the other hand, if one restricts
the class of initial conditions to be even (in x) then one
obtains extra symmetry conditions on the scattering data
that resemble the ones we find. This leads us to the impor-
tant conclusion that soliton solutions to (1) will have a
classical NLS limit so long as (28) admits an even soliton
solution. Finally, we point out that similar symmetry
results were obtained in [17] for the classical NLS (28)
on the semi-infinite interval.
Nonlocal Painlevé type equations.—The Painlevé equa-

tions are a certain class of nonlinear second-order complex
ordinary differential equations that normally arise as
reductions of the ‘‘soliton evolution equations’’ which
are solvable by IST; cf. [6,18,19]. They are particularly
interesting due to their properties in the complex plane and
their associated integrability properties. In this section we
propose nonlocal analogs of Painlevé type equation. There
are two prototypes. First, look for a self-similar solution to
the nonlocal NLS equation (1) of the form

qðx; tÞ ¼ 1

ð2tÞ1=2 fðzÞe
i� logt=2; z ¼ x=ð2tÞ1=2; (29)

where � is a real constant. Then, upon substituting this
ansatz into (1) we find a nonlocal Painlevé type equation

fzzðzÞ þ �fðzÞ þ izfzðzÞ � 2�f2ðzÞf�ð�zÞ ¼ 0; (30)

where � ¼ ð�þ iÞ and � ¼ �1. It should be noted that
substituting the same ansatz (29) into the classical NLS
equation leads to the above Eq. (30), where the nonlinear
term is now evaluated at z; this equation is of Painlevé type.
Similarly, if we substitute qðx; tÞ ¼ ei�tfðxÞ, �, f 2 R into
Eq. (1) we find

fxxðxÞ � 2�f2ðxÞfð�xÞ þ �fðxÞ ¼ 0: (31)

Equation (31) is a nonlocal analog of the elliptic function
associated with the classical (local) NLS equation where
the the nonlinear term is now evaluated at x which has an
elliptic function solution. Elliptic functions are known to
be of Painlevé type; i.e., their solution has movable poles,
but no movable branch points.
Conclusion.—A nonlocal nonlinear Schrödinger equa-

tion is found from a new and simple reduction of the
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well-known AKNS system. It has a Lax pair and an infinite
number of conservation laws. The IST for decaying data is
developed and a one breathing soliton solution is found.
The IST requires different scattering data symmetries than
the classical NLS equation. A nonlocal NLS hierarchy as
well as novel nonlocal Painlevé type equations are also
derived.
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