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The concept of cross density of states characterizes the intrinsic spatial coherence of complex photonic

or plasmonic systems, independently of the illumination conditions. Using this tool and the associated

intrinsic coherence length, we demonstrate unambiguously the spatial squeezing of eigenmodes on

disordered fractal metallic films, thus clarifying a basic issue in plasmonics.
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The optical properties of nanostructured materials have
attracted a lot of attention due to their potential for light
concentration and transport at subwavelength scales [1,2].
New possibilities have emerged for the design of efficient
sources and absorbers of visible and near-infrared radia-
tion, or for optical storage and information processing
with ultrahigh spatial density. Metallic nanostructures
benefit from the excitation of surface plasmons that per-
mit concentration at ultrasmall length scales and ultrafast
time scales [3]. Disordered media also offer the possi-
bility to build up spatially localized modes (e.g., by the
process of Anderson localization) [4]. Light concentra-
tion and transport at subwavelength scales encompass a
broad range of processes, including coherent control at
the nanoscale [5], enhancement of light-matter interac-
tion in weak and strong coupling regimes [6–10], super-
radiance [11], enhancement of nonradiative energy
transfer [12], or light focusing beyond the diffraction
limit [13–15]. The spatial extent of eigenmodes is of
central importance, since it characterizes the ability of
the system to support concentrated or delocalized exci-
tations. It drives, e.g., the coherence length of surface
plasmons [10,16–19], the range of nonradiative energy
transfer [20,21], or the lower limit for spatial focusing by
time reversal or phase conjugation [22–24]. The trade-off
between localized and delocalized excitations is also a
central issue for the understanding and the control of the
optical properties of disordered fractal metallic films [25].
In this Letter, we introduce the cross density of states
(CDOS) as a quantity that characterizes the overall spatial
extent of eigenmodes, and use it to address the spatial
localization of light on disordered fractal metallic films.
We demonstrate unambiguously the spatial squeezing of
eigenmodes close to the percolation threshold, thus pro-
viding a theoretical basis to clarify a controversial issue in
plasmonics [6,26–28]. This also illustrates the relevance
of the CDOS to characterize the intrinsic spatial coher-
ence in photonics and plasmonics systems.

In order to characterize the intrinsic spatial coherence of
a complex photonic or plasmonic system at a given fre-
quency !, we introduce a two-point quantity �ðr; r0; !Þ
that we will refer to as CDOS, defined as

�ðr; r0; !Þ ¼ 2!

�c2
Im½TrGðr; r0; !Þ�: (1)

In this expression, c is the speed of light in vacuum,
Gðr; r0; !Þ is the electric dyadic Green function that
connects the electric field at point r to an electric-dipole
source p at point r0 through the relation EðrÞ ¼
�0!

2Gðr; r0; !Þp, and Tr denotes the trace of a tensor.
The choice of this quantity as a measure of the intrinsic

spatial coherence results from the observation that the
imaginary part of the Green function at two different points
appears in a number of situations where the spatial coher-
ence of random fields (produced by random sources and/or
a disordered medium) needs to be characterized [4,29–31].
The imaginary part of the Green function also describes
the process of focusing by time reversal in a closed cavity
[22,23]. The precise definition of the CDOS in Eq. (1) has
been chosen so that it reduces to the local density of states
(LDOS) when r and r0 coincide [2,32].
The physical picture behind the CDOS is a counting of

optical eigenmodes that connect two different points at a
given frequency. In a network picture, the LDOS measures
the number of channels crossing at a given point, whereas
the CDOS measures the number of channels connecting
two points. In order to give a more rigorous basis to this
picture, let us first consider the canonical situation of a
nonabsorbing system (e.g., a nanostructured material)
placed in a closed cavity. In this case, using an orthonormal
discrete basis of eigenmodes with eigenfrequencies!n and
eigenvectors enðrÞ, the CDOS defined by Eq. (1) can be
rewritten as [33]:

�ðr;r0;!Þ¼X
n

Tr½e�nðr0;!Þenðr;!Þ��ð!�!nÞ: (2)

This expression explicitly shows that the CDOS sums up
all eigenmodes connecting r to r0 at frequency!, weighted
by their strength at both points r and r0. In the case of an
open and/or absorbing system, as that considered in the
present study, the rigorous introduction of a basis of eigen-
modes is more involved. Approaches have been developed
in the quasistatic limit [34], or based on statistical proper-
ties of the spectral decomposition of non-Hermitian
matrices [35]. Assuming weak leakage, one can also use
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a phenomenological approach in which quasimodes are
introduced by broadening the eigenmodes using a line-
width �n. This results in an expansion similar to (2) with
a Lorentzian line shape replacing the delta function [33].
This generalizes the physical picture to lossy systems.
Nevertheless, it is important to note that all calculations
presented in this Letter are performed using Eq. (1), in
which the correct counting of modes is implicit, without
referring to a basis of eigenmodes.

We shall now show that the concept of CDOS allows us
to clarify an important issue in nanophotonics concerning
light scattering and localization in disordered fractal me-
tallic films. These peculiar structures exhibit optical prop-
erties that strongly differ from those of bulk metals or
ensembles of isolated nanoparticles [25]. In particular,
the multiscale geometry of percolation clusters induces
long-range correlations that make simple models (e.g.,
white-noise potentials or homogenization procedures)
invalid. The interplay between surface-plasmon reso-
nances and multiple scattering by the fractal percolation
clusters leads to spatial concentration of light in subwave-
length areas (hot spots) [36,37]. The theoretical description
of this phenomenon has been the subject of controversy.
Using a scaling theory in the quasi-static limit, a mecha-
nism based on Anderson localization has been put forward
[38]. Anderson localization on percolating systems for
electronic (quantum) transport leads to a clear transition
between the localized and delocalized regimes [39]. For
light scattering on percolating metallic systems, a theoreti-
cal analysis has proved the existence of localized modes
characterized by algebraic rather than by exponential spa-
tial confinement, and that can be coupled to radiation [35].
Numerical simulations on planar random composites have
even shown that localized and delocalized plasmonic
eigenmodes could coexist [26]. This has been confirmed
by measurements and computations of intensity fluctua-
tions in the near field [27,28], that have also indicated that
localized modes should dominate around the percolation
threshold (but not exactly at percolation). More recently,
measurements of near-field LDOS statistics have con-
firmed the existence of spatially localized modes in the
regime dominated by fractal clusters (close to the percola-
tion threshold) [6]. For nanophotonics, a major issue is the
description of the overall spatial extent of the full set of
eigenmodes whatever the underlying mechanism (regard-
ing this issue, the coexistence of localized and delocalized
modes is not a central point). Spatial coherence and the
concept of CDOS appear as natural tools to address this
issue, as we shall see. We will introduce the intrinsic
coherence length as a measure of this overall spatial extent.
This gives a new point of view for the description of light
localization on disordered metallic films.

The CDOS can be calculated numerically using exact
three-dimensional simulations. We summarize the proce-
dure that is fully described in Ref. [40]. Semicontinuous

gold films are generated using a kinetic Monte Carlo algo-
rithm, reproducing the geometrical features of real films.
Typical realizations of films are shown in the top row in
Fig. 1 (with gold in black color), each film being 5 nm thick
and lying in free space. To calculate the electric dyadic
Green functionGðr; r0; !Þ, we need to calculate the electric
field at a position r generated by a point electric-dipole
source p located at position r0. To proceed, we solve
numerically the Lippmann-Schwinger equation:

EðrÞ ¼ E0ðrÞ þ!2

c2

Z
½�ðr0; !Þ � 1�G0ðr; r0; !ÞEðr0Þd3r0

(3)

where G0 is the vacuum dyadic Green function, E0ðrÞ
the incident field and �ðr; !Þ the dielectric function. The
full dyadic Green function is deduced from EðrÞ ¼
�0!

2Gðr; r0; !Þp. The computation of the LDOS and
CDOS follows from Eq. (1).
We show in Fig. 1 the LDOS maps (middle row) and

CDOS maps (bottom row) computed in a plane at a
distance z ¼ 40 nm above two different films (shown in
the top row) corresponding to two different regimes.
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FIG. 1 (color online). (a),(b): Geometry of the disordered films
generated numerically (with gold in black color). (a): f ¼ 20%,
(b): f ¼ 50%. (c),(d): Maps of the normalized LDOS
�ðr; !Þ=�0ð!Þ calculated in a plane at a distance z ¼ 40 nm
above the film surface, �0ð!Þ being the LDOS in vacuum.
(e),(f): Maps of the normalized CDOS �ðr; r0; !Þ=�0ð!Þ with
r0 fixed at the center of the sample. � ¼ 780 nm.
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For f ¼ 20% (left column), the film is composed of iso-
lated nanoparticles whereas for f ¼ 50% (right column)
the film is slightly below the percolation threshold (from
numerical simulations, this threshold is estimated at
f ¼ 53%), a regime in which fractal clusters dominate
(multiscale resonant regime) [6,25,40]. Before studying
spatial coherence and the extent of eigenmodes based on
the CDOS, let us summarize here the main features of the
LDOS maps [21,40]. For low surface fraction (left col-
umn), LDOS peaks are observed on top of isolated nano-
particles that are resonant at the observation wavelength.
A correspondence between LDOS peaks and the position
of one or several nanoparticles is easily made. For a differ-
ent observation wavelength (not shown for brevity), parti-
cles can switch on or off resonance and the position of the
LDOS peaks changes, but remain attached to individual
particles. The sample behaves as a collection of individual
nanoparticles with well-identified surface plasmon reso-
nances. In the multiscale resonant regime (right column),
the LDOS structure is more complex. There is no obvious
correspondence between the film topography (composed
of fractal clusters in which the concept of individual nano-
particles becomes meaningless) and the localized field
enhancements responsible for LDOS fluctuations. This is
a known feature of fractal metallic films [26,36,37,41].

The maps of the CDOS �ðr; r0; !Þ (bottom row in Fig. 1)
are displayed versus r for a fixed position r0 (chosen at the
center of the sample). Their meaning can be understood as
follows: They display the ability of a point r at a given
distance from the center point r0 to be connected to this
center point by the underlying structure of the optical
eigenmodes. For example, a large CDOS (larger than the
vacuum CDOS) would allow two quantum emitters at r
and r0 to couple efficiently. It would also ensure coherent
(correlated) fluctuations of the light fields at r and r0 under
thermal excitation [29]. The CDOS also allows one to
discriminate between two hot spots at r and r0 that belong
to the same eigenmode (or that are connected by at least
one eigenmode), or that are completely independent. Last
but not least, since the CDOS implicitly sums up the spatial
extent of the full set of eigenmodes, it appears as a natural
tool to describe the overall spatial localization in the multi-
scale resonant regime. It is striking to see that the extent of
the CDOS in the multiscale resonant regime [Fig. 1(f)] is
reduced to a smaller range compared to the case of a film
composed of isolated nanoparticles [Fig. 1(e)]. The reduc-
tion of the extent of the CDOS clearly demonstrates an
overall spatial squeezing of the eigenmodes close to the
percolation threshold (remember that the CDOS is implic-
itly a weighted sum over the full set of eigenmodes). Let us
stress that the approach based on the CDOS gives a non-
ambiguous description of this overall spatial squeezing,
whatever the underlying mechanism. It is based on a con-
cept implicitly related to field-field spatial correlations as
in classical spatial coherence theory, that seems to carry

sufficient information to describe one of the most striking
features in the optics of disordered fractal metallic films.
In order to quantify the overall reduction of the spatial

extent of eigenmodes in the multiscale resonant regime, we
introduce an intrinsic coherence length ‘coh, defined from
the width of the CDOS. More precisely, fixing r0 at the
center of the sample, we use polar coordinates in the
plane z ¼ 40 nm parallel to the sample mean surface to
write �ðr; r0; !Þ ¼ �ðR; �;!Þwith R ¼ jr� r0� and define
an angularly averaged CDOS ��ðR;!Þ ¼ ð2�Þ�1 �R

2�
0 �ðR; �;!Þd�. The intrinsic coherence length ‘coh is

defined as the half width at half maximum of ��ðR;!Þ
considered as a function of R. It is important to note that
‘coh is not necessarily the size of the hot spots observed on
the surface, since a given eigenmode can be composed of
several hot spots. Two different hot spots separated by a
distance smaller than ‘coh can be intrinsically connected
(meaning that they are connected by at least one eigen-
mode). The ability to clarify this distinction between
eigenmodes and hot spots is an essential feature of the
CDOS. The averaged value of h‘cohi and its variance
Varð‘cohÞ (error bars) are shown in Fig. 2 versus the film
surface fraction for two wavelengths, � ¼ 650 nm and
� ¼ 780 nm. Both quantities are calculated using a
statistical ensemble of realizations of disordered films
generated numerically (the error bars indicate the real
variance of ‘coh, and not computations errors due to lack
of numerical convergence, the latter being ensured by a
sufficiently large set of realizations). For both wavelengths,
the average value h‘cohi is significantly smaller near the
percolation threshold than for lower filling fractions.
This unambiguously demonstrates the overall spatial
squeezing of eigenmodes in the regime dominated by
fractal clusters, with a stronger squeezing at � ¼ 780 nm
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FIG. 2 (color online). Averaged value and variance (error bars)
of the intrinsic coherence length ‘coh calculated at a distance
z ¼ 40 nm above a disordered film, versus the gold surface
fraction f. Inset: Typical film geometries (black color corre-
sponds to gold).
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where more pronounced resonances occur [25]. The curve
for � ¼ 780 nm even shows a minimum near the perco-
lation threshold. Our approach provides a theoretical
description of the experiment in Ref. [6], although in this
study, the inverse participation ratio was used to connect
qualitatively the spatial extent of eigenmodes to the vari-
ance of the LDOS fluctuations. Therefore only a qualitative
comparison with the curve in Fig. 2 is possible (the inverse
participation ratio and the intrinsic coherence length can-
not be compared directly). Moreover, the precise shape of
the calculated curves might also be influenced by finite-
size effects inherent to the numerical simulation. The
behavior of Varð‘cohÞ is also instructive. Strong fluctua-
tions are observed in the regime of isolated nanoparticles.
In this regime, optical modes attached to a single particle
and delocalized modes are observed, which is different
from the known behavior in quantum electronic transport
[39]. The strong fluctuations reflect the fluctuations in the
interparticle distance. Conversely, in the multiscale reso-
nant regime, the reduction of the fluctuations reinforces the
assumption of a mechanism based on collective interac-
tions that involve the sample as a whole.

In summary, we have shown that the CDOS charac-
terizes the intrinsic spatial coherence of a photonic or
plasmonic system, independently on the illumination con-
ditions. Using this concept, we have demonstrated unam-
biguously the spatial squeezing of plasmonic eigenmodes
on disordered fractal metallic films close to the percolation
threshold. This clarifies a basic issue in plasmonics con-
cerning the description of the optical properties of these
films. This illustrates the relevance of the CDOS in the
study of spatial coherence in photonics and plasmonics
systems, and more generally in wave physics.

We acknowledge Y. De Wilde, M. Kociak, V.
Krachmalnicoff, and R. Sapienza for stimulating
discussions.
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