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We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a

two-dimensional unitary superconformal field theory with N ¼ ð0; 2Þ supersymmetry. To illustrate its

utility, we study superconformal theories obtained by twisted compactifications of four-dimensional

N ¼ 4 super–Yang-Mills theory on Riemann surfaces and construct their gravity duals.
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Introduction.—Conformal field theories (CFTs) in two
spacetime dimensions play a central role in describing
critical phenomena and appear prominently in string
theory. In two dimensions the conformal group is infinite
dimensional, and similarly other symmetries usually form
infinite-dimensional algebras. As a consequence, such
theories are tightly constrained and sometimes exactly
solvable. Here we will be concerned with theories with at
least N ¼ ð0; 2Þ superconformal symmetry: they are
interesting in their own right, play a pivotal role in type
II and heterotic string compactifications [1], and are of
some significance in mathematics because of their connec-
tion to vector bundles on Calabi-Yau manifolds [2].

The N ¼ ð0; 2Þ superconformal algebra contains an
Abelian right-moving (RM) Kac-Moody current ! called
the R-symmetry current, under which the complex super-
charge Q is charged. This current is important, as it
determines the dimension of chiral primary operators and
the Virasoro RM central charge cR. In a nonconformal
N ¼ ð0; 2Þ supersymmetric theory with an R-symmetry
Uð1ÞR and other Abelian flavor symmetries (under which
Q is not charged), the R symmetry is not uniquely defined:
mixing Uð1ÞR with the flavor symmetries produces equally
good R symmetries. The R current is in the same super-
multiplet as the stress tensor T��, and mixing corresponds

to improvement transformations of the multiplet [3]. On
the contrary, if the theory flows to an infrared (IR) fixed
point, the superconformal R symmetry is singled out
(improvement transformations are fixed by tracelessness
of T��), and it is a nontrivial task to determine it.

In this Letter, we prove that in a unitary CFT (with mild
normalizability assumptions) the superconformal R
symmetry is the linear combination of all IR Abelian
symmetries that extremizes a quadratic function ctrR of the
coefficients. This function is entirely determined by the
’t Hooft anomalies of the theory, and thus it can be com-
puted in the ultraviolet (UV), provided no accidental IR
symmetry mixes in, even without a Lagrangian description
of the theory. We call this principle c extremization; it is
analogous to a maximization in four-dimensional super-
conformal field theories (SCFTs) [4]. The function
ctrR is dubbed the ‘‘trial central charge’’ because it is the

would-be cR as a function of a trial R symmetry. The
central charge cR is a conformal anomaly, and supersym-
metry relates it to the R-symmetry ’t Hooft anomaly which
is renormalization group (RG) invariant and easy to
compute.
We illustrate the utility of c extremization by computing

the central charges of two-dimensionalN ¼ ð0; 2Þ SCFTs
arising from the compactification of four-dimensional
N ¼ 4 super–Yang-Mills theory (SYM) on Riemann sur-
faces. For gauge group UðNÞ, this corresponds to N
D3-branes wrapped on Riemann surfaces, and in the large
N limit we construct holographic dual three-dimensional
anti–de Sitter space ðAdSÞ3 solutions of type IIB super-
gravity: the holographic computation of the central charges
perfectly agrees. More details and new examples will
appear in Ref. [5].
Such theories from genus-one Riemann surfaces were

studied in Ref. [6], where the authors raised a puzzle about
the computation of the central charges in field theory. We
believe that the question is settled by c extremization.
Anomalies.—Local quantum field theories in two dimen-

sions suffer from gauge and gravitational anomalies, but
not mixed gauge-gravitational anomalies [7]. Consider a
two-dimensional field theory where Uð1Þn is the Abelian
part of the flavor symmetry group: then there are conserved
currents JI�ðxÞ with I ¼ 1; . . . ; n, and a conserved stress

tensor T��ðxÞ. When the theory is coupled to nondynam-

ical (external) vector fields AI
� with field strengths FI

��,

and to a curved background, the anomalous violation of
current conservation is

r�JI� ¼ X
L

kIL

8�
FL
��"

��; r�T
�
� ¼ k

96�
"��@�@��

�
��;

(1)

where ��
�� are the Christoffel symbols and "�� is the

covariant antisymmetric tensor. The real constants kIL

and k are the ’t Hooft anomaly coefficients, and we have
chosen a renormalization scheme in which kIL is a sym-
metric matrix, the stress tensor is symmetric, and local
Lorentz transformations are nonanomalous. We emphasize
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that despite using the term ‘‘gauge anomalies,’’ we always
consider anomalies of global currents.

If the theory has a weakly coupled Lagrangian descrip-
tion, the coefficients kIL and k get contribution from chiral
fermions and bosons and are computed exactly by one-loop
diagrams with two current insertions. Spin- 12 (complex)

Weyl fermions contribute as

kIL ¼ TrWeyl�
3QIQL; k ¼ TrWeyl�

3; (2)

where �3 is the chirality matrix that conventionally we take
positive on right movers, and QI are the charge operators.
Majorana-Weyl fermions contribute to k as half of a Weyl
fermion; real chiral bosons contribute to k as Weyl fermi-
ons, and if linearly coupled to the vector fields as
QIffiffiffi
�

p AI
�@

��, they also contribute to kIL as Weyl fermions.

Regardless of the existence of a weakly coupled descrip-
tion, the anomaly coefficients kIL, k are well defined by the
operator equations (1) and—as long as the symmetries are
not broken—are invariant under RG flow [8].

If the theory is conformal, the anomaly coefficients kIL,
k are related to central terms in the conformal and current
algebras [i.e., in the operator product expansions (OPEs)]
on flat space. It is convenient to work in Euclidean signa-
ture (x0 ¼ ix0E) and in radial quantization using holomor-
phic indices z ¼ x1 þ ix0E, �z ¼ x1 � ix0E. Following
standard conventions (see e.g., Ref. [9]) we define
TðzÞ¼�2�TzzðxÞ, Tð�zÞ ¼ �2�T�z �zðxÞ, jIðzÞ ¼ �i�JIzðxÞ,
�|Ið�zÞ ¼ �i�JI�zðxÞ.
We will consider CFTs in the following general class:

(1) the CFT is unitary and the Virasoro generators L0, �L0

are bounded below; (2) the vacuum is normalizable.
Notable exceptions to the second condition are theories
with noncompact free bosons. These assumptions lead to
some standard properties: First, in each conformal family
there is a primary whose conformal dimensions ( �h, h) are
non-negative. Second, an operator A is holomorphic
( �@A ¼ 0) if and only if �h ¼ 0, and it is antiholomorphic
(@A ¼ 0) if and only if h ¼ 0 [the only (0,0) operator is
the identity]. In particular, conserved currents are either
holomorphic [right moving (RM)] or antiholomorphic [left
moving (LM)].

Consider the conformal and current algebra OPEs,

TðzÞTð0Þ � cR
2z4

þ 2Tð0Þ
z2

þ @Tð0Þ
z

; jIðzÞjJð0Þ � kIJR
z2

;

�Tð�zÞ �Tð0Þ � cL
2�z4

þ 2 �Tð0Þ
�z2

þ �@ �Tð0Þ
�z

; �|Ið�zÞ�|Jð0Þ � kIJL
�z2

;

where � means equality up to regular terms. Unitarity
constrains kIJR and kIJL to be positive definite. The OPEs
between holomorphic and antiholomorphic fields vanish.
We then have

kIJ ¼
8><
>:
kIJR if I; J areRM

�kIJL if I; J areLM and k ¼ cR � cL

0 otherwise

: (3)

SCFTs with N ¼ ð0; 2Þ supersymmetry have two hol-
omorphic spin- 32 operators T�

F ðzÞ (supercurrents) and a

holomorphic spin-1 operator !ðzÞ (R-symmetry current)
in addition to the stress tensor TðzÞ, �Tð�zÞ. The N ¼ 2
superconformal algebra is

TðzÞTð0Þ � cR
2z4

þ 2Tð0Þ
z2

þ @Tð0Þ
z

;

TðzÞT�
F ð0Þ �

3T�
F ð0Þ
2z2

þ @T�
F ð0Þ
z

;

TðzÞ!ð0Þ �!ð0Þ
z2

þ @!ð0Þ
z

; T�
F ðzÞT�

F ð0Þ � 0;

!ðzÞT�
F ð0Þ � �T�

F ð0Þ
z

; !ðzÞ!ð0Þ � cR
3z2

;

Tþ
F ðzÞT�

F ð0Þ �
2cR
3z3

þ 2!ð0Þ
z2

þ 2Tð0Þ þ @!ð0Þ
z

:

(4)

In particular, the supercharge Q has an R charge of 1.
Equation (4) fixes a relation between the central charge cR
and the R-symmetry anomaly:

3kRR ¼ cR: (5)

The superconformal R symmetry.—We wish to charac-
terize the exact superconformal R-symmetry current ��

[where !ðzÞ ¼ �i��z] in terms of anomalies, so that it is
invariant under RG flow and independent of detailed
knowledge of the physics at the IR fix point. We consider
a trial R-current �tr

� constructed by mixing �� with all

flavor currents JI�:

�tr
�ðtÞ ¼ �� þ X

Ið�RÞ
tIJ

I
�: (6)

Then we construct a trial central charge ctrRðtÞ proportional
to the gauge anomaly of the trial R symmetry

ctrRðtÞ ¼ 3

�
kRR þ 2

X
Ið�RÞ

tIk
RI þ X

I;Jð�RÞ
tItJk

IJ

�
; (7)

which could be extracted from Eqs. (1) and (2), or from the
two-point function h��ðxÞ��ð0Þi.
Superconformal symmetry imposes constraints on kIJ. If

JI� is a LM flavor current then kRI ¼ 0, because�� is RM.

If JI� is a RM flavor current, it is part of a supermultiplet.

With N ¼ 2 superconformal symmetry, the multiplet of
Kac-Moody currents J Aþ ¼ ðc A

1;2; j
A
1;2Þ is made of two

N ¼ 1 current multiplets (c A
a , j

A
a ) with a ¼ 1, 2 [10]

[the combined index (A, a) runs over all RM flavor cur-
rents, covering a subset of the values of the index I]. In
superspace J Aþ is a holomorphic antichiral spinor super-
field [11]. In general, there are constraints on the RM
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symmetry algebra (it has to admit a Manin triple [10,12]),
but in the Abelian case it only has to be even dimensional.
The Abelian current algebra is described by the following
nonvanishing OPEs:

jAa ðzÞjBb ð0Þ �
	abk

AB

z2
; c A

a ðzÞc B
b ð0Þ �

	abk
AB

z
; (8)

where we have diagonalized the two-point function of the
two currents in each N ¼ 2 multiplet, and the fermionic
two-point function follows from Jacobi identities.
Unitarity requires kAB to be positive definite.

The action of the superconformal generators on the
fields in the current multiplet is

TðzÞc A
a ð0Þ � c A

a ð0Þ
2z2

þ @c A
a ð0Þ
z

;

TðzÞjAa ð0Þ � iqAa
z3

þ jAa ð0Þ
z2

þ @jAa ð0Þ
z

;

T�
F ðzÞc A

a ð0Þ � 	ab � i"abffiffiffi
2

p
�
iqAb
z2

þ jAb ð0Þ
z

�
;

T�
F ðzÞjAa ð0Þ �

	ab � i"abffiffiffi
2

p
�
c A

b ð0Þ
z2

þ @c A
b ð0Þ
z

�
;

!ðzÞc A
a ð0Þ � i"ab

c A
b

z
; !ðzÞjAa ð0Þ � "ab

qAb
z2

:

(9)

The central terms qAa (required to be real by unitarity) are
called background charges [13]: they are compatible with
Jacobi identities and do not break superconformal
symmetry.

Because of the central terms qAa in the OPE TðzÞjAa ð0Þ in
Eq. (9), the currents jAa are not primary operators. This also
leads to a violation of current conservation on a gravita-
tional background and of covariance on a gauge back-
ground. Since there are no mixed gauge-gravitational
anomalies in two dimensions [7], one can cure the problem
by adding local counterterms to the action, preserving
superconformal symmetry. From the point of view of the
superconformal algebra, this corresponds to a redefinition
of the triplet (T, T�

F ,!) that preserves Eq. (4) (up to a shift
of the central charge cR) but modifies Eq. (9) removing the
background charges qAa . Most importantly, the newly
defined R-symmetry !0 has vanishing mixed gauge
anomalies with all RM flavor currents jAa , as can be seen
from the OPE !0ðzÞjAa ð0Þ.

Let us show how to redefine the stress tensor multiplet.
Under the linear shift

T0ðzÞ ¼ TðzÞ þ i�A
a@j

A
a ðzÞ;

T�0
F ðzÞ ¼ T�

F ðzÞ þ
ffiffiffi
2

p
i�A

a ð	ab � i"abÞ@c A
b ðzÞ;

!0ðzÞ ¼ !ðzÞ þ 2�A
a"abj

A
b ðzÞ;

(10)

the algebra (4), (8), and (9) is preserved up to the shifts:

q0Aa ¼ qAa � 2kAB�B
a ;

c0R ¼ cR � 12�A
aq

A
a þ 12�A

a�
B
ak

AB:
(11)

Since kAB is positive definite, it is always possible to cancel
all central terms in Eq. (9) by taking �A

a ¼ 1
2 ðk�1ÞABqBa .

The function c0Rð�Þ is quadratic with a positive definite
second derivative; in fact, it is minimized precisely at the
value of �A

a for which all RM currents are primaries. The
central charge at that point c0R ¼ cR � 3qAaq

B
a ðk�1ÞAB is

what is usually called the central charge of the theory,
and unitarity requires c0R > 0. Moreover, at that point
supersymmetry forbids mixed gauge anomalies between
the superconformal R current and RM flavor currents.
We have proven that at the IR fixed point, in a renor-

malization scheme in which there are no mixed violations
of covariance and flavor invariance, there are also no mixed
anomalies between the superconformal R current and fla-
vor currents:

kRI ¼ 0; 8I � R: (12)

Those conditions are RG invariant and can be imposed in
the UV as well. We can express Eq. (12) as an extremality
condition for ctrRðtÞ:�tr

�ðt0Þ is the superconformal R current

for t0 such that

@ctrR
@tI

ðt0Þ ¼ 0; 8I � R: (13)

Since ctrRðtÞ is a quadratic function, there is a unique
solution. The function is actually maximized along direc-
tions tI that correspond to LM currents and minimized
along RM ones. This identifies which currents are LM or
RM at the IR fixed point simply in terms of anomalies.
Notice that assumption (2) discussed above might be
relaxed if we are careful enough not to mix the R symmetry
with non-(anti)holomorphic currents.
We would like to point out the similarity between c

extremization and the minimization principle for the
two-point function of the R-symmetry current in higher
dimensions [14], as well as the maximization for cR in
Landau-Ginzburg models observed in Ref. [15].
An example.—Let us study the N ¼ ð0; 2Þ two-

dimensional theories arising at low energy from (twisted)
compactifications of four-dimensional N ¼ 4 SYM on a
closed Riemann surface �g of genus g. For gauge group

UðNÞ, this corresponds to wrapping N D3-branes on a
holomorphic two-cycle �g in noncompact Calabi-Yau

fourfolds. To preserve some supersymmetry generically
we have to twist the theory; i.e., we have to turn on a
background gauge field A� coupled to the SOð6Þ R sym-

metry of the four-dimensional theory. We take the metric
on the Riemann surface to be of constant curvature 
:
ds2� ¼ e2hðdx2 þ dy2Þ, with h ¼ � logðð1þ x2 þ y2Þ=2Þ,

 ¼ 1 for g ¼ 0; h ¼ logð2�Þ=2, 
 ¼ 0 for g ¼ 1; and
h ¼ � logðyÞ, 
 ¼ �1 for g> 1. The background flux is
then F ¼ dA ¼ P

I¼1;2;3F
ITI, with
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FI ¼ �aIe
2hdx ^ dy; I ¼ 1; 2; 3; (14)

and TI the Abelian generators of the three factors in the
SOð2Þ3 Cartan subgroup of SOð6Þ embedded block diago-
nally. The global symmetry of the IR theory is SOð2Þ3,
while the constants aI parametrize the twist and are quan-
tized as 2ðg� 1ÞaI 2 Z for g � 1, and aI 2 Z for g ¼ 1.
To preserve supersymmetry we take

a1 þ a2 þ a3 ¼ �
: (15)

For generic nonzero values of aI, one has N ¼ ð0; 2Þ
supersymmetry; if some of the aI vanish, supersymmetry
is enhanced [6,16]. In what follows we will concentrate on
the generic case. The trial R symmetry is a linear combi-
nation of the generators of SOð2Þ3,

TR ¼ �1T1 þ �2T2 þ ð2� �1 � �2ÞT3; (16)

where �1;2 parametrize the mixing, and the R charge of the

complex supercharge Q has been fixed to 1. To determine
the correct superconformal R symmetry we can use c
extremization, and for that we need the two-dimensional
anomalies.

The spectrum of massless chiral fermions of the two-
dimensional theory is determined by the dimensional
reduction of the gaugini of the four-dimensional theory
[16]. The gaugini are in the representation 2 � �4 of
SOð3; 1Þ � SOð6Þ and decompose under SOð2Þ3 into chiral
spinors of charges A: (� 1

2 , � 1
2 , � 1

2 ); B: (
1
2 ,

1
2 , � 1

2 ); C:

( 12 , � 1
2 ,

1
2 ); D: (� 1

2 ,
1
2 ,

1
2 ). By the index theorem, the

number of RM minus LM fermions is

nð�ÞR � nð�ÞL ¼ 1

2�

Z
�
Tr�F ¼ �t�
�; (17)

where � ¼ fA; B; C;Dg, Tr� is taken in the representation
�, and t� are the charges of the fermions in that represen-
tation under A�, namely, tA ¼ 


2 , tB ¼ 

2 þ a1 þ a2, tC ¼

� 

2 � a2, tD ¼ � 


2 � a1. We have also defined 
� ¼
1
2�

R
� e2hdxdy with 
� ¼ j2ðg� 1Þj for g � 1, and


� ¼ 1 for g ¼ 1. Taking into account that the fermions
are in the adjoint representation of the gauge group, we can
compute the trial central charge from Eqs. (2) and (5),

ctrRð�iÞ ¼ 3dG
X
�

ðnð�ÞR � nð�ÞL Þðqð�ÞR Þ2; (18)

where dG is the dimension of the gauge group and qð�ÞR is
the charge under TR. One can extremize ctrRð�iÞ and find
that at the critical point it takes the value

cR ¼ 12a1a2a3
�dG
2ða1a2 þ a1a3 þ a2a3Þ � a21 � a22 � a23

: (19)

One also finds cR � cL ¼ P
�ðnð�ÞR � nð�ÞL Þ ¼ 0, and thus

there is no gravitational anomaly. If cR turns out to be
nonpositive, it means that one of our assumptions is not
met. We will see below that at large N, only in a particular

infinite range of aI is there a unitary SCFT with normal-
izable vacuum.
For gauge group SUðNÞ and at largeN, one can find dual

type IIB supergravity solutions. We present here only the
salient features of the solutions, deferring a detailed dis-
cussion to Ref. [5]. The metric is

ds210¼�1=2

�
e2f

�dt2þdz2þdr2

r2
þe2gds2�

�

þ��1=2
X
I

ðXIÞ�1ðd�2
I þ�2

I ðd’IþAIÞ2Þ; (20)

and there is a nontrivial but not illuminating 5-form flux
that will be presented in Ref. [5]. We have defined

� ¼ X
I

XI�2
I ; X1X2X3 ¼ 1;

X
I

�2
I ¼ 1;

while AI are the potentials for the fluxes FI in Eq. (14). The
parameters specifying the solution are

e2g ¼ a1X
2 þ a2X

1

2
; ðX1Þ2X2 ¼ a1ða2 þ a3 � a1Þ

a3ða1 þ a2 � a3Þ ;

ef ¼ 2

X1 þ X2 þ X3
; X1ðX2Þ2 ¼ a2ða1 þ a3 � a2Þ

a3ða1 þ a2 � a3Þ :

For g ¼ 0, 1, the solutions are regular and causal when two
of the parameters obey aI > 0; for g> 1, one needs two of
the aI > 1=2 or all three of them to be aI < 1=2. In this
range of aI, N ¼ 4 SYM flows to an IR fixed point and
the AdS3 supergravity solution (20) is the holographic dual
to a normalizable ground state. The central charge at lead-
ing order in N can be computed with standard holographic
techniques:

cR ¼ 3RAdS3

2Gð3Þ
N

¼ 6efþ2g
�N
2: (21)

Plugging ef and e2g in, one finds agreement with Eq. (19)
at leading order in N.
Further examples of N ¼ ð0; 2Þ SCFTs arising from

M5-branes wrapped on four-manifolds will appear in
Ref. [5]: the central charges will be computed by c extrem-
ization from anomalies (extracted as in Ref. [17]), and
matched by a holographic calculation.
We would like to thank C. Beem, J. Distler, C. Herzog,

K. Jensen, I. Melnikov, L. Rastelli, M. Roček, S. Sethi, Y.
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informative discussions.
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