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We show that universal quantum computation can be achieved in the standard pure-state circuit model

while the entanglement entropy of every bipartition is small in each step of the computation. The

entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we

show that the same conclusion applies to many entanglement measures commonly used in the literature.

This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed

entanglement, witness-based measures, and more generally any entanglement measure which is continu-

ous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable

tools to assess the power of quantum computers.
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Introduction.—Quantum computers are believed to offer
exponential computational advantages over classical com-
puters. Understanding the essential features of quantum
physics accounting for this increased power is a fundamen-
tal but largely unsolved problem. Perhaps the most natural
candidate to which to attribute the power of quantum
computers is entanglement [1]. Indeed entanglement has
proved to be an essential resource in quantum information
processing tasks such as teleportation [2], entanglement-
based cryptography [3], and dense coding [4]. It is there-
fore natural to expect that entanglement plays an important
role in quantum computation as well. However, in spite of
significant insights [5–18], the question of whether entan-
glement will provide an understanding of quantum com-
puting power in any decisive way (and if so, in which form)
is to date unresolved.

In this Letter we investigate how much entanglement
must be generated if a quantum computation is to achieve
an exponential speed up (see also Refs. [8,9,13–17]). We
focus on quantum computations operating on pure states.
This setting is important when studying the power of
quantum algorithms, because the latter are usually formu-
lated in a pure-state framework. Perhaps contrary to com-
mon intuition, we will show that, throughout any quantum
algorithm, states can remain slightly entangled without
significantly compromising the efficiency of the computa-
tion. The result is proved for a major family of entangle-
ment measures. It applies in particular to the fundamental
measure of bipartite pure-state entanglement i.e., the
entanglement entropy. More precisely, we show that clas-
sically simulating pure-state quantum circuits where the
entanglement entropy of every bipartition is at most Oð�Þ
at all times is as hard as classically simulating arbitrary i.e.,
universal quantum circuits. Here � can be any parameter
which scales inverse polynomially with the number of
qubits n, say � ¼ 1=n or � ¼ 1=n1000. Note that such �
even tend to zero in the thermodynamic limit.

To prove the result, we show that a pure-state quantum
computer restricted to operate within a small environment
around the unentangled state j0in still has universal com-
putational power (see Fig. 1). Because the entanglement
entropy is continuous and equal to zero on product states,
its value will be small for any state in such an environment.
As continuity is the key quantity used in the argument, the
result is by no means limited to the entanglement entropy.
A fully analogous conclusion applies to every entangle-
ment measure which is continuous in a certain natural

FIG. 1 (color online). Quantum computation in an � neighbor-
hood of j0in. A quantum circuit composed of T gates starts with
the input j0in and traces out some path j0in ! jc 1i ! � � � !
jc Ti in the n-qubit Hilbert space H . In principle the jc ii may
be highly entangled. Here we consider quantum computations
QC� where the state of the computer is required to be � close to
j0in at all times. We show that a QC� still has universal quantum
computing power, for any � ¼ 1=polyðnÞ. Every entanglement
measure E which is sufficiently continuous will take on
small values throughout the computation. Using this approach
one shows that universal quantum computation is possible
with vanishingly small amounts of entanglement; the argument
applies to entanglement entropy and many other entanglement
measures.
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sense. This includes many commonly considered (bipartite
and multipartite) measures.

These results demonstrate that the folklore intuition that
‘‘weakly entangled pure quantum states represent little
quantum computing power’’ is in fact incorrect for a multi-
tude of entanglement measures. This shows in particular
that many entanglement measures are unsuitable tools to
assess the power of quantum computers.

Quantum circuits and classical simulation.—We will
consider the following (standard) pure-state quantum cir-
cuit model. The input is the n-qubit state j0in and circuits C
consist of poly(n) elementary unitary gates acting on at
most d qubits for some constant d. The computation is
followed by a standard basis measurement on the first
qubit. The complexity class BQP (bounded-error quantum
polynomial time) represents all decision problems that are
efficiently solvable on a quantum computer with bounded
error probability.

We say that an n-qubit quantum circuit C can be simu-
lated efficiently classically if there exists a polynomial-
time classical algorithm with runtime poly(n, 1=�) which
allows us to estimate the probabilities pð0Þ and pð1Þ of
measuring the outcome 0 and 1, respectively, up to error �.

Entanglement and quantum computation.—Before prov-
ing our main results, we discuss some background related
to the assertion that entanglement is a resource required for
quantum computation.

First, it is important to recall that there is no unique way
of quantifying how much entanglement is present in a
many-body quantum system. There are infinitely many
measures of entanglement [1,19] whose behavior may
differ significantly, even qualitatively. In particular there
exist scenarios where the same quantum state is found to be
‘highly entangled’ relative to one measure of entanglement
whereas it is only ‘slightly entangled’ relative to another
one (and indeed our results will provide a clear illustration
of this). In short, the entanglement of a many-body quan-
tum state does not exist.

Second, in the present context it is important to distin-
guish between pure- and mixed-state quantum computa-
tion. In the mixed state setting, several works have
provided evidence that quantum computation operating
with weakly entangled states is more powerful than clas-
sical computation [7,8,11,12]. This is essentially due to the
fact that even nonentangled mixed states are nontrivial
objects, being mixtures of potentially exponentially many
separable pure states [8]. For quantum computations oper-
ating with pure states, the current view however seems to
be different. Here it is often said that highly entangled
quantum states must be generated if a quantum algorithm is
to achieve an exponential speed up. This assertion is based
on results such as those in Ref. [9] where this intuition is
rigorously confirmed for one particular entanglement mea-
sure commonly used in the literature: the Schmidt rank. We
briefly recall the result of Ref. [9], because an important

point of the present work will be to contrast this result with
various other entanglement measures. For a system of n
qubits and a bipartition (A;B), denote �A;B ¼ logRA where
RA is the Schmidt rank i.e., the rank of the reduced density
operator of the qubits in A. Let � be the maximal value of
�A;B over all bipartitions. For any parameter �, a quantum
circuit where � ¼ Oð�Þ in every step of the computation
will be called a (�; �) circuit. In Ref. [9] the following was
proved [20]:
Theorem 1: Every (�; log n) quantum circuit operating

on n qubits can be simulated efficiently classically.
Similar results have been proved for a few other entan-

glement measures. However they are also based on, or
closely related to, the Schmidt rank [8,14–16].
Entanglement entropy.—In this Letter we demonstrate

that for many commonly used entanglement measures we
cannot hope for a result analogous to Theorem 1. This will
hold in particular for the entanglement entropy. The
entanglement entropy EA;B of an n-qubit state jc i for a
bipartition (A; B) is given by the von Neumann entropy
Sð�AÞ ¼ �Tr�A log�A, where �A is the reduced density
operator of subsystem A. Let E ¼ maxEA;B denote the
maximal entanglement entropy over all bipartitions.
The notion of an (E; �) quantum circuit is defined fully
analogously to the (�; �) circuits considered above. A
parameter � is said to be polynomially small if 1=� ¼
OðpðnÞÞ for some polynomial pðnÞ, where n is the number
of qubits. We will show the following:
Observation 1: Consider any polynomially small �.

Then it is possible to efficiently solve every problem in
BQP even when, throughout the entire computation, the
entanglement entropy E is at most Oð�Þ. Consequently, the
task of classically simulating (E; �) circuits is as hard as
the task of simulating a universal quantum computer.
Note the very sharp contrast between Theorem 1 and

Observation 1. In particular, whereas quantum circuits
generating logarithmic amounts of Schmidt-rank entangle-
ment can be simulated efficiently classically, � amounts of
entanglement entropy are generally as hard to simulate as
universal quantum computation—note that � tends to zero
with growing n.
The proof of Observation 1 will be obtained by combin-

ing Steps 1 and 2 below. First, for any � > 0 the set S�

consists of all n-qubit states jc iwhich are � close to j0in in
trace distance. We denote by QC� a restricted quantum
computer where only those quantum circuits are allowed
for which the state of the n-qubit register belongs to S� in
each step of the computation.
Step 1: Consider any polynomially small �. Having

access to a QC� allows one to solve every problem in
BQP in polynomial time. In particular, the task of classi-
cally simulating aQC� is as hard as the task of simulating a
universal quantum computer.
This claim is proved as follows: Let C denote an arbi-

trary polynomial-size m-qubit quantum circuit composed
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from a universal gate set (say CNOT gates, Hadamard gates,
and �

8 -phase gates). Suppose that C acts on the input j0im
and is followed by measurement of the first qubit in the
computational basis. Let p denote the probability of mea-
suring 1. Then the following problem is well known to be
BQP complete: given the promise that either p � 2=3 or
p � 1=3, determine which of these possibilities is the case.
Next we show that this BQP-complete problem can be
solved efficiently by means of a transformed quantum
circuit operating within the QC� model. The input of the
new circuit is the n-qubit state j0in where n :¼ mþ 1.
First a single-qubit rotation on qubitmþ 1 is performed to
generate the state

j0im � ð ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p j0i þ ffiffiffi

�
p j1iÞ: (1)

Then each gate G in the circuit C is applied controlled on
qubit mþ 1 being in the state j1i (i.e., we apply the
operation which acts as jc i � j0i ! jc i � j0i and jc i �
j1i ! Gjc i � j1i). Letting Ct denote the product of the
first t gates in C, it follows that after t gates, the quantum
register is in the state

jc ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p j0im � j0i þ ffiffiffi

�
p

Ctj0im � j1i: (2)

After all gates have been applied, a standard basis measure-
ment on the first qubit is performed. The probability q of
measuring 1 is given byq ¼ �p. Repeating the computation
polyðnÞ times allows us to estimate q with an accuracy of
1=polyðnÞ. Because � is polynomially small, this allows one
to determine in polynomial time whether p � 2=3 or p �
1=3. Finally, we remark that the overlap between jc ti and
j0in is ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

for every t. Therefore the entire computation
operates within S �� with �� ¼ ffiffiffi

�
p

(see the Supplemental
Material [21]). The result now readily follows.

Step 2: Given any polynomially small �, there exists a
suitable polynomially small � such that E ¼ Oð�Þ for every
state in S�.

To prove Step 2, consider an n-qubit state jc i in S�

where �will be determined later. For a bipartition (A; B) of
the qubits, let �A and j0iA denote the states obtained from
jc i and j0in, respectively, by tracing out all qubits in B. We
now recall the following continuity property [22] of the
von Neumann entropy S. Let � and � be two arbitrary
density operators on a d-dimensional Hilbert space and
denote by T their trace distance. Then, as long as T �
1=ð2eÞ, one has

jSð�Þ � Sð�Þj � 2Tlog2ðdÞ � 2Tlog2ð2TÞ: (3)

Because Tðjc i; j0inÞ � � and because the trace distance
is contractive, this implies that Tð�A; j0iAÞ � �. Using
Eq. (3) and the fact that j0iA has zero entropy, it follows that

EA;Bðjc iÞ ¼ Sð�AÞ � 2�jAj � 2�log2ð2�Þ; (4)

for every � � 1=ð2eÞ, where jAj denotes the number of
qubits in A. It follows that, given any polynomially small �,

there exists a suitable polynomially small � such that
EA;Bðjc iÞ ¼ Oð�Þ. This proves Step 2.
Combining Steps 1 and 2 immediately yields the proof

of Observation 1.
Continuous measures.—The only properties of the

entanglement entropy used to prove Observation 1 are
that (a) this function vanishes on the product state j0in
and (b) it is sufficiently continuous, in the sense of Step 2.
Such continuity is rather natural and thus exhibited by
various other well known entanglement measures; this
includes bipartite measures as well as various true multi-
partite measures. As a result, Observation 1 can readily be
generalized (see the Supplemental Material [21]):
Observation 2: Consider any polynomially small �.

Then it is possible to efficiently solve every problem in
BQP even when, throughout the entire computation, E is
Oð�Þ. HereE is any entanglementmeasure from the follow-
ing list: (a) �-Renyi entropy for any � � 1, (b) geometric
measure [23], (c) relative entropy of entanglement [24],
(d) squashed entanglement [25], (e) localizable entangle-
ment of every qubit pair [26], (f) multipartite concurrence
[27], and (g) n-Tangle [28]. Consequently, the task of
classically simulating (E; �) quantum circuits is as hard as
the task of simulating a universal quantum computer.
The list of entanglement measures in Observation 2 can

be made considerably longer. Whereas we will not attempt
to make this list complete, it is interesting to note that
analogous conclusions to Observation 2 can be reached in
one go for generally defined families of measures. We
give a sketch of the results; details are given in the
Supplemental Material [21].
A first natural example is the family of distance mea-

sures, which have the form

Dðjc iÞ ¼ inffdðjc i; �Þ: � is unentangledg: (5)

Here dð�; �Þ is some notion of distance and the minimiza-
tion is either taken over all pure or mixed separable states
�, depending on the definition of D. Thus D measures the
distance to the nearest unentangled state. Examples are the
geometric measure and the relative entropy of entangle-
ment. Clearly, any other distance measure can be added to
Observation 2 as long as the measure d is sufficiently well
behaved; that is, by choosing � polynomially small one can
ensure that the d distance between any jc i in S� and j0in is
at most �.
A second example is the family of epsilon measures

[29]. If E is an entanglement measure and � > 0 then the
associated � measure is defined as

E�ðjc iÞ ¼ inffEð�Þ: � s:t:Tðjc i; �Þ � �g; (6)

where � may generally be a mixed state and where Tð�; �Þ
denotes the trace distance. Thus E� measures the minimal
entanglement guaranteed to present in an � ball around
jc i. This construction gives a technique to obtain a smooth
function E� even when the original measure E is not [29].
Step 1 immediately implies that universal quantum
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computation can be achieved with zero � entanglement, for
every underlying entanglement measure E and for every
polynomially small �. An interesting example is the
Schmidt rank: universal quantum computation is possible
with zero Schmidt rank � measure for all bipartitions—
note the sharp contrast with Theorem 1.

A third family regards measures related to polynomial
functions in the entries of a state. Consider the quantities

hc j�kAjc i�k and hc j�kAjc �i�k; (7)

where k ¼ polyðnÞ, where A is an nk-qubit operator, and
where jc �i denotes the complex conjugate of jc i in the
standard basis. The quantities of Eq. (7) define polynomials
in the coefficients of jc i and their complex conjugates.
Several entanglement measures are given by expressions of
the form of Eq. (7) or as simple functions thereof. Consider
e.g., the multipartite concurrence and the n-tangle, as
well as the general family of comb-based measures [30].
Another class related to Eq. (7) with k ¼ 1 regards
witness-based measures of the form

ECðjc iÞ ¼ maxf0;�max
W2C

hc jWjc ig; (8)

where C denotes a subfamily of entanglement witness
operators [31]. Provided that the operator norm of A scales
at most polynomially with the number of qubits, every
quantity of the form of Eq. (7) is sufficiently continuous
for our purposes. As a result, for a large class of entangle-
ment measures based on such quantities a result similar to
Observation 2 will hold. This is, e.g., the case for the
multipartite concurrence, n-tangle, and witness-based
measures EC for which the operator norm of each W 2 C
scales at most polynomially with the system size.

Insufficiently continuous measures.—It is interesting
to note that the continuity argument used to prove
Observations 1 and 2 does not apply to the Schmidt rank:
indeed the latter is a discrete measure. This is in nice
agreement with Theorem 1 and clarifies the special nature
of (�; log n) quantum circuits and their efficient classical
simulation. Other measures of interest to which the con-
tinuity argument does not apply are the Renyi � entropies
with �< 1 (see the Supplemental Material [21]).

Concluding remarks.—An implication of our results is
that many pure-state entanglement measures used in the
literature give little information about the performance of
(pure-state) quantum algorithms. What could be more
appropriate tools to this end? Note that, whereas the entan-
glement entropy E (say) throughout a QC� computation
will be polynomially small, the success probability � that
the algorithm outputs the corrects result is polynomially
small as well. However, it is likely that their ratio E=�will
be large. The latter quantity could therefore be a better
measure of quantum computing power than how much
entanglement is actually present in the system.
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