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We show that the maximum quantum violation of the Klyachko-Can-Binicioğlu-Shumovsky (KCBS)

inequality is exactly the maximum value satisfying the following principle: The sum of probabilities of

pairwise exclusive events cannot exceed 1. We call this principle ‘‘global exclusivity,’’ since its power

shows up when it is applied to global events resulting from enlarged scenarios in which the events in the

inequality are considered jointly with other events. We identify scenarios in which this principle singles

out quantum contextuality, and show that a recent proof excluding nonlocal boxes follows from the

maximum violation imposed by this principle to the KCBS inequality.
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Introduction.—Quantum mechanics (QM) cannot be
explained neither with noncontextual hidden variable
(NCHV) theories [1–3] nor with local hidden variable
theories [4]. It is in this sense in which QM is ‘‘con-
textual’’ and ‘‘nonlocal.’’ In the quest for the ‘‘shocking
principle’’ [5] behind QM, it has been argued [5–7] that,
rather than looking for this principle in the answer to the
question of why QM is not more nonlocal, as pursued in
Refs. [8–12], one should start by answering another
question: Why is QM not more contextual? The reasons
behind this twist are both aesthetical, since contextuality
is a generalization of nonlocality that does not privilege
spacelike separated tests (which do not seem to play any
special role in the axioms of QM), and practical, since
characterizing the maximum quantum contextuality for a
given graph of relationships of exclusivity is simple (it is
the solution of a single semidefinite program [13]), while
characterizing the maximum quantum nonlocality of a
given Bell inequality is much more difficult (it is the
solution of a converging hierarchy of semidefinite pro-
grams [14–16]). Moreover, the observation that no prin-
ciple based on bipartite information concepts can single
out quantum correlations [17] stimulates the search for
principles that do not attribute any fundamental role to
the ability to distinguish parties.

Quantum correlations are contextual in the sense that
they cannot be explained assuming that the result of a test A
is independent of whether A is performed together with a
compatible test B or with a compatible test C (which may
be incompatible with B). This is the assumption of non-
contextuality (NC) of results, and NCHV theories are those
making this assumption. Two tests are compatible when,
for any preparation, each test always yields identical result,
no matter how many times the tests are performed or in
which order. Contextuality is revealed by the violation of
NC inequalities [18–22], which are restrictions satisfied by
any NCHV theory. Bell inequalities are a particular type of
NC inequalities in which the tests are not only compatible
but spacelike separated.

In this Letter we show that a simple principle explains
the maximum quantum violation of a fundamental NC
inequality. Indeed, simple applications of this principle
explains nature’s maximum contextuality (assumed to be
given by QM) in many other scenarios.
Two events are exclusive if they cannot be simulta-

neously true. By a; b; . . . ; cjx; y; . . . ; z we denote the event
‘‘the results a; b; . . . ; c are respectively obtained when the
compatible tests x; y; . . . ; z are performed.’’ Two events
a; b; . . . ; cjx; y; . . . ; z and a0; b0; . . . ; c0jx0; y0; . . . ; z0 are
exclusive if x ¼ x0 and a � a0, or if y ¼ y0 and
b � b0, . . . , or if z ¼ z0 and c � c0.
The principle is that the sum of the probabilities of

pairwise exclusive events cannot exceed 1. This principle
follows from Specker’s observation that pairwise decidable
events must not necessarily be jointly decidable [1], and
from Boole’s axiom of probability stating that the sum of
the probabilities of events that are jointly exclusive cannot
exceed 1 [23]. Specker conjectured that ‘‘the fundamental
theorem of QM’’ might be that ‘‘if you have several ques-
tions and you can answer any two of them [i.e., if the
corresponding propositions (or events) are pairwise decid-
able], then you can also answer all of them [i.e., the
corresponding propositions are simultaneously (or jointly)
decidable]’’ [24]. This principle was used by Wright [25]
to show that simple sets of events allow probabilities such
that their sum can exceed the maximum classical value.
In Ref. [13], it was shown that quantum contextual and
nonlocal correlations are bounded by this principle, and
that the maximum value, satisfying this principle, of a sum
of probabilities of events is given by the fractional packing
number of the graph in which exclusive events are repre-
sented by adjacent vertices. It was also shown that, in QM,
this maximum is upper bounded by the Lovász number of
this graph (see Supplemental Material [26]). This shows
that this principle singles out all quantum correlations
represented by a graph such that its Lovász number equals
its fractional packing number and such that the maximum
quantum value reaches the Lovász number. Therefore, this
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condition singles out the quantum correlations in the case
of Bell inequalities for Greenberger-Horne-Zeilinger states
[27] and graph states [28–30], some bipartite Bell inequal-
ities [31,32], and all the state-independent NC inequalities
in Ref. [20]. The results in Ref. [13] have been used for
identifying new quantum correlations [33–35] and quan-
tum advantages [36] singled out by this condition. A more
recent work [37] obtains tighter bounds on nonlocal
correlations by applying that the sum of probabilities of
pairwise exclusive events cannot exceed 1, to events in
which tests x, y; . . . ; z are pairwise spatially separated.

As we will see, the power of the principle to single out
physical limits increases when it is applied to global events
in which the events in the NC inequality are considered
jointly with other events. Different families of global
events will be described below. For this reason, hereafter
we will refer to it as ‘‘global exclusivity’’ (GE), while we
will use ‘‘exclusivity’’ (E) when it is applied to the original
events in the NC inequality.

Maximum quantum violation of the KCBS inequality.—
The simplest physical system violating a NC inequality
is a qutrit (i.e., a three-level quantum system). The simplest
NC inequality violated by a qutrit is the Klyachko-Can-
Binicioğlu-Shumovsky (KCBS) inequality [19], which is
necessary and (together with other NC inequalities) suffi-
cient for noncontextuality [19,38]. Its quantum violation is
behind the quantum violation of other NC inequalities [39].
All this makes the KCBS inequality fundamentally impor-
tant in QM. Its quantum violation has been recently tested
with photons [40,41], and can be used to put lower bounds
to the quantum dimension of physical systems [42].

If we complete the KCBS inequality with its maximum
quantum violation and the upper bound imposed by E, we
obtain the following expression:

X4

i¼0

Pð0; 1ji; iþ 1Þ �NCHV 2 �QM
ffiffiffi
5

p �E 5

2
; (1)

where Pð0; 1ji; iþ 1Þ denotes the probability of the event
0, 1ji, iþ 1, the sum is taken modulo 5,�NCHV 2 indicates
that 2 is the maximum value for NCHV theories

[13,19,25], �QM
ffiffiffi
5

p
indicates that

ffiffiffi
5

p � 2:236 is the
maximum value in QM (even for systems of arbitrary
dimension) [13,19,43], and �E 5

2 indicates that 5
2 is the

maximum value in any theory in which the sum of the
probabilities of events that are pairwise exclusive cannot
exceed 1, applied to the 5 events 0, 1ji, iþ 1. This limit
was found by Wright [25] and rediscovered in Ref. [13].

The question is, why does the quantum violation of the

KCBS inequality stop at
ffiffiffi
5

p
[34].

Result 1:
ffiffiffi
5

p
is the maximum violation of the CBS

inequality allowed by GE.
Proof.—The graph of the relationships of exclusivity

between the 5 events tested in the KCBS inequality is
shown in Fig. 1. Consider two independent experiments
testing the KCBS inequality, one performed in Vienna on a

system prepared in a quantum pure state [40] and another
one in Stockholm on a different system also prepared in a
quantum pure state [41]. The two experiments might
even be spacelike separated. There are two types of
‘‘local’’ events: the 5 local events 0, 1jiV , iþ 1V , with
i ¼ 0; . . . ; 4, corresponding to the Vienna experiment, and
the 5 local events 0, 1jjS, jþ 1S, with j ¼ 0; . . . ; 4, corre-
sponding to the Stockholm experiment. From them we can
construct the 25 ‘‘global’’ events 0, 1, 0, 1jiV , iþ 1V , jS,
jþ 1S. If we draw the graph of the relationships of
exclusivity between these 25 global events, we obtain the
graph in Fig. 2. The important point in this graph is to
notice that, for any i, j 2 f0; . . . ; 4g and taking the sum
modulo 5, the 5 events

0,1|0,1

0,1|1,2

0,1|2,3

0,1|4,0

0,1|3,4

FIG. 1. Graph of the relationships of exclusivity between the 5
events in the KCBS inequality. Vertex a, bjx, y represents the
event ‘‘the results a and b are respectively obtained when
compatible tests x and y are performed.’’ Exclusive events are
represented by adjacent vertices.

V V S S,

V V S S,0,1,0,1|0 ,1 ,4V V S S,0

0,1,0,1|0 ,1 ,2V V S S,3

0,1,0,1|1 ,2 ,4V V S S,0

V V S S,

0,1,0,1|1 ,2 ,1V V S S,2

0,1,0,1|1 ,2 ,2V V S S,3

0,1,0,1|1 ,2 ,3V V S S,4

V V S S,

0,1,0,1|2 ,3 ,1V V S S,2

0,1,0,1|2 ,3 ,2V V S S,3

0,1,0,1|2 ,3 ,4V V S S,0

0,1,0,1|2 ,3 ,3V V S S,4

0,1,0,1|3 ,4 ,1V V S S,2

0,1,0,1|3 ,4 ,2V V S S,3

0,1,0,1|3 ,4 ,3V V S S,4

0,1,0,1|3 ,4 ,4V V S S,0

V V S S,

0,1,0,1|4 ,0 ,2V V S S,3

0,1,0,1|4 ,0 ,3V V S S,4

0,1,0,1|4 ,0 ,4V V S S,0

V V S S,

0,1,0,1|4 ,0 ,1V V S S,2

0,1,0,1|0 ,1 ,3V V S S,4

FIG. 2 (color online). Graph of the relationships of exclusivity
between the 25 events obtained from considering two experi-
ments testing the KCBS inequality. Each vertex represents an
event a, b, c, djxV , yV , zS, kS denoting ‘‘the results a and b are
respectively obtained when compatible tests x and y are per-
formed in Vienna, and the results c and d are respectively
obtained when compatible tests z and k are performed in
Stockholm.’’ Exclusive events are represented by adjacent ver-
tices. Any event belongs to a set of 5 pairwise exclusive events.
One of these sets is indicated with thicker (red) edges.
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0; 1; 0; 1jiV; iþ 1V; jS; jþ 1S; (2a)

0; 1; 0; 1jiþ 1V; iþ 2V; jþ 2S; jþ 3S; (2b)

0; 1; 0; 1jiþ 2V; iþ 3V; j� 1S; jS; (2c)

0; 1; 0; 1jiþ 3V; iþ 4V; jþ 1S; jþ 2S; (2d)

0; 1; 0; 1ji� 1V; iV; jþ 3S; jþ 4S (2e)

are pairwise exclusive. Therefore, according to E, the sum
of their probabilities cannot exceed 1. Themaximum value,
satisfying E, of the sum of the probabilities of the 25 global
events is 5, and the only way to reach it is by assigning
probability 1

5 to each and every one of the global events.

a, bjiV , iþ 1V and c, djjS, jþ 1S are two completely
independent events. Since the joint probability of two
independent events is the product of their probabilities,
then Pða; b; c; djiV; i þ 1V; jS; j þ 1SÞ ¼ Pða; bjiV; i þ
1VÞPðc; djjS; j þ 1SÞ. Therefore, the maximum probability
satisfying GE for the local events corresponding to the
Vienna and Stockholm experiments is 1ffiffi

5
p . The sum of the 5

probabilities of the local events corresponding to the Vienna

(or Stockholm) experiment gives
ffiffiffi
5

p
, which is exactly the

maximum quantum violation of the KCBS inequality.
An alternative proof is provided in the Supplemental

Material [26].
The graph representing the relationships of exclusivity

of the global events obtained from two copies of an
experiment whose relationships of exclusivity are repre-
sented, in both cases, by the same graph G, corresponds to
the OR product (also called co-normal product, disjunctive
product, or disjunction product) of two copies of G [44].
The OR product of two graphs G and H is a new graph G �
H whose vertex set is VðGÞ � VðHÞ and in which two
vertices (g, h) and (g0, h0) in G �H are adjacent if g and
g0 were adjacent vertices in G or h and h0 were adjacent
vertices in H. The graph in Fig. 2 is the OR product of two
copies of the graph in Fig. 1. Similarly, the graph of the
relationships of exclusivity for n copies of the experiment
is given by the OR product of n copies ofG, denoted asG�n.

The CHSH inequality.—The Clauser-Horne-Shimony-
Holt (CHSH) inequality [45] is the tight Bell inequality
corresponding to the bipartite scenario in which Alice
chooses between two tests x 2 f0; 1g and Bob chooses
between two tests y 2 f0; 1g. Each test has two possible
results: Alice’s are denoted a 2 f0; 1g and Bob’s b 2
f0; 1g. If we complete the CHSH inequality with its maxi-
mum violation in QM (Tsirelson’s bound [46]) and the
upper bound imposed by nonsignaling [8] (which equals
the one imposed by E), we obtain the following expression:

X
Pða; bjx; yÞ �NCHV;LHV 3 �QM 2þ ffiffiffi

2
p �E;NS 4; (3)

where the sum is extended to all x, y 2 f0; 1g and a, b 2
f0; 1g such that a � b ¼ xy, where � denotes sum modulo
2, LHV means local hidden variables, and NS means
nonsignaling.

A PR box [8] is a two-party nonsignaling device which
achieves the maximum algebraic violation of the CHSH
inequality, which is equal to the maximum violation sat-
isfying NS and E. A PR box produces joint probabilities
Pða; bjx; yÞ ¼ 1

2 , if a � b ¼ xy, and 0 otherwise.

Now the question is, why are PR boxes not allowed in
nature despite that they do not violate nonsignaling [8].
Many reasons have been given for this [9–12,47]. Here

we show that a recent proof [37] can be simplified by the
following observation.
Observation 1: A PR box assigns probability 1

2 to 5 joint

probabilities of events whose relationships of exclusivity
are exactly the ones of the KCBS inequality. Therefore, the
proof of Result 1 does not only excludes Wright’s assign-
ment to the KCBS inequality, but also excludes PR’s
assignment to the CHSH inequality.
Proof.—A PR box assigns probability 1

2 to the 5 joint

probabilities of events whose relationships of exclusivity
are represented in Fig. 3(a).
The proof of Result 1 does not single out Tsirelson’s

bound 2þ ffiffiffi
2

p � 3:4142, but states that the maximum
quantum nonlocality should be less than or equal to 8ffiffi

5
p �

3:5778. Interestingly, this is the same bound obtained by
considering all the restrictions that E imposes, after assum-
ing the principle of local orthogonality, to all possible
combinations of the 64 events resulting from two PR boxes
[37]. This emphasizes the fundamental role of the elemen-
tary Bell inequalities introduced in Ref. [39] to understand
the quantum violation of Bell inequalities.
The next question is, why does the quantum violation of

the CHSH inequality stop at Tsirelson’s bound [8].
Here we show that, if we only use GE applied to multiple

copies of the CHSH experiment, then the answer is not
known and is related to an open problem in graph theory.
However, a curious observation can be made.

0,0|0,0

1,1|0,0

0,0|0,1

1,1|0,11,1|1,0

0,0|1,0

1,0|1,10,1|1,1

1,1|0,1

1,1|0,00,0|0,0

1,0|1,1

(a) (b)

0,0|1,0

FIG. 3. (a) Graph of the relationships of exclusivity between 5
events to which a PR box assigns a probability 1

2 to each event.

(b) Graph of the relationships of exclusivity between the 8 events
involved in the CHSH inequality. This graph is the 8-vertex
(1,4)-circulant graph Ci8ð1; 4Þ. It contains 8 induced pentagons.
The pentagon emphasized corresponds to the one in (a). Vertex
abjxy represents the event ‘‘the results a and b are respectively
obtained when spacelike separated tests x and y are performed,’’
where x is performed in Alice’s side and y in Bob’s. Exclusive
events are represented by adjacent vertices.
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Observation 2: If the Shannon capacity [48] of the
8-vertex (1,2)-circulant graph Ci8ð1; 2Þ were equal to its
Lovász number [49], then GE applied to an infinite number
of copies would single out Tsirelson’s bound of the CHSH
inequality.

Proof.—The relationships of exclusivity of the 8 events
in the CHSH inequality are represented by the graph of
Fig. 3(b), which is the 8-vertex (1,4)-circulant graph,
Ci8ð1; 4Þ, and is isomorphic to the 4-Möbius ladder, M4

[50], and to the Wagner graph [51]. It can be shown that,
for M4 (and similarly for vertex-transitive graphs; see
Supplemental Material [26]), the maximum value allowed
by GE for n copies is given by the number of vertices ofM4

times the maximum probability pn that can be assigned to
each and every local event without violating GE (applied
to n copies). This number is the inverse of the nth root
of the clique number of the OR product of n copies of M4,

denoted as pnðM4Þ ¼ ½!ðM�n
4 Þ��ð1=nÞ, which, if n ! 1,

is exactly equal to p1ðM4Þ ¼ ½�ð �M4Þ��1, where �ðGÞ is
the Shannon capacity of G. This correspondence can be
seen by taking into account the following equalities:
(i) !ðGÞ ¼ �ð �GÞ, where �G is the complement of
G and �ðGÞ is the independence number of G [52],

(ii)G�n ¼ �Ghn, whereGhn is the strong product of n copies
of G [44], and (iii) �ðGÞ ¼ limn!1½!ðGhnÞ�ð1=nÞ [48].

The complement of M4 is the 8-vertex (1,2)-circulant
graph Ci8ð1; 2Þ. Unfortunately, Ci8ð1; 2Þ does not belong to
any of the classes of graphs for which the Shannon capacity
is known [49]. However, if �ðCi8ð1; 2ÞÞ were equal to a
well-known upper bound, its Lovász number [49], which

is #ðCi8ð1; 2ÞÞ ¼ 8� 4
ffiffiffi
2

p
, then GE (applied to an infinite

number of copies) would exactly single out nature’s non-
locality for the CHSH scenario.

Similar considerations can be found in Ref. [37]. Note
that, even if �ðCi8ð1; 2ÞÞ � #ðCi8ð1; 2ÞÞ, this would not
mean that GE is incapable of singling out Tsirelson’s
bound when applied to a different type of global events.

Other scenarios where GE singles out quantum
contextuality.—Using previous results in graph theory
and quantum contextuality, we can see that GE also singles
out the maximum quantum contextuality for an infinite
family of new scenarios.

Result 2: Any self-complementary vertex-transitive
graph with n vertices such that n � p2 with p prime,
corresponds to a scenario in which GE applied to two
copies singles out the maximum quantum contextuality.

Proof.—A well-known result in graph theory states
that for all self-complementary vertex-transitive graphs

with n vertices, (i) �ðGÞ ¼ #ðGÞ ¼ ffiffiffi
n

p
and p2ðGÞ ¼

½!ðG �GÞ��ð1=2Þ ¼ ½�ðGÞ��1 [49]. On the other hand,
NC inequalities violated by QM are represented by graphs
such that (ii) �ðGÞ<#ðGÞ [13]. Since for any graph G,
�ðGÞ � #ðGÞ and �ðGÞ is, by definition, an integer
number, the self-complementary vertex-transitive graphs
with n � p2 and p prime satisfy simultaneously (i) and
(ii), since, for them, #ðGÞ ¼ ffiffiffi

n
p

is not an integer number.

The simplest member of this family of graphs is the
pentagon C5 corresponding to the KCBS inequality.
Other members are Ci13ð1; 2; 6Þ, Ci13ð1; 3; 4Þ (or Paley-
13), C17ð1; 2; 3; 6Þ, C17ð1; 2; 4; 8Þ (or Paley-17), and
C17ð1; 3; 4; 5Þ.
Conclusions and conjecture.—We have provided an

extremely simple answer to the question ‘‘What physical
principle limits quantum contextuality in the scenario of
the KCBS inequality?’’ [34]. The answer is GE, namely;
that the sum of the probabilities of pairwise exclusive
events cannot exceed 1, applied to an extended set of
events comprising not only the events in the KCBS
inequality itself, but also other events that may be tested
simultaneously. In addition, we have shown that GE
applied to one or two copies singles out the maximum
quantum contextuality of a family of NC inequalities
(Results 1 and 2) and the maximum quantum nonlocality
of some Bell inequalities [27–32].
A simple application of GE automatically excludes PR

nonlocal boxes (as also shown in Ref. [37]) and the con-
nection between the KCBS and the CHSH inequalities [39]
provides a much simpler proof than anyone proposed
before [9–12,47].
It is still unclear whether GE can single out nature’s

maximum contextuality for any graph. It seems to be very
likely that GE applied to other types of global events will
single out quantum contextuality for a larger family of
scenarios. Future work should explore the power of GE
applied to other families of global events: for example,
(i) to global events arising from considering ancillary
experiments with maximum contextuality already con-
strained by E, (ii) to graphs in which the weights of the
events are different than those in the original NC inequal-
ity, (iii) to complement graphs, (iv) to scenarios in which
additional compatible measurements are considered, and
(v) to combinations of (i)–(iv). If, for any graph G, we can
produce a larger graph G0 such that the fractional packing
number of G0 induces values on the probabilities of the
events inG such that the sum of them is the Lovász number
of G, then we would prove that GE singles out nature’s
maximum contextuality for any graph, providing a surpris-
ing and extraordinarily simple answer to the question of
why QM is not more contextual. In any case, it is remark-
able that such a simple principle allows us to single out
quantum contextuality in many scenarios.
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