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With the intent of exploring how the interplay between boundary effects and chiral symmetry breaking

may alter the thermodynamical behavior of a system of strongly interacting fermions, we study the

Casimir effect for the setup of two parallel layers using a four-fermion effective field theory at zero

density. This system reveals a number of interesting features. While for infinitely large separation (no

boundaries), chiral symmetry is broken or restored via a second order phase transition, in the opposite case

of small (and, in general, finite) separation the transition becomes first order, rendering effects of finite

size, for the present setup, similar to those of a chemical potential. Appropriately moving on the

separation-temperature plane, it is possible to generate a peculiar behavior in the temperature dependence

of the thermodynamic potential and of the condensate, compensating thermal with geometrical variations.

A behavior similar to what we find here has been predicted to occur in bilayer graphene. Chiral symmetry

breaking induces different phases (massless and massive) in the Casimir force separated by critical lines.

DOI: 10.1103/PhysRevLett.110.060401 PACS numbers: 03.70.+k, 11.30.Rd

It is well known that the presence of boundaries in empty
space causes deformations of the quantum vacuum pro-
ducing a macroscopic force. Casimir was the first to notice
this for the case of two parallel, perfectly conducting plates
and for the electromagnetic field, showing that the force Fc

is attractive. In natural units, Fc ¼ ��2Sa�4=240, with a
being the plate separation and S their surface area [1].

Since its original discovery, the study of the Casimir
effect has branched out in several directions and motivated
experimental and theoretical research in an attempt to
uncover its fundamental importance [2,3]. A somewhat
special attention has been directed towards understanding
how the magnitude and, especially, the sign of the force
depend on the properties of the vacuum, the geometry of
the boundaries, or the external conditions, and the possible
technological implications of this are by now well appre-
ciated. Regarding this point, the fermion Casimir effect has
triggered some initial curiosity due to the different statis-
tics obeyed by fermions as opposed to bosons, but it was
soon understood that this difference does not necessarily
lead to a change in the sign of the force. The application of
the fermion Casimir effect that is most celebrated is,
perhaps, the bag model of hadrons (see Ref. [4] for a
review), but the scrutiny of fermion quantum vacuum fluctu-
ations has included the study of geometrical, thermal, dimen-
sional effects, and others (see, for example, Refs. [5–14]
or Ref. [2] for a longer list of references).

All previous work in relation to the fermion Casimir
effect has focused, as far as we are aware, on the case of
free fields. However, the problem may become more inter-
esting if interactions are switched on. In fact, while in the
case of free fields the dynamics is somewhat trivial, the
inclusion of interactions opens up onto a richer spectrum
of possibilities. This problem is worthy of attention from
different perspectives. First of all, the interplay between

chiral symmetry, the geometrical and topological proper-
ties of the spacetime, and quantum vacuum fluctuations
is a concrete example allowing one to explore how
the phenomena of symmetry breaking and the Casimir
effect are connected (see, for example, Refs. [15–19]).
Secondly, strongly interacting fermions have a well recog-
nized importance in describing several nonrelativistic con-
densed matter systems routinely studied in the laboratory.
These include superconductors, conductive polymers, and
several carbon-based materials (see Ref. [20] for some
examples). Also, since chiral symmetry resides in the quark
sector, strongly interacting fermion field theories are
central tools to describe the phase diagram of QCD (see
Refs. [21,22] for review). In this context, quantum vacuum
energy effects have a direct relevance for any analysis of the
phase structure aiming at including effects of finite size (see,
for instance, Ref. [23]).
Let us begin our discussion summarizing a few points

regarding the Casimir effect for free fermions. In the
following, we will consider the case of parallel plates.
Natural units will be used. The free fermion dynamics is
described by the Dirac equation with the fields forced to
obey some boundary conditions at the plates that we assume
to be located at z ¼ 0 and z ¼ a. Imposing, for simplicity,
bag boundary conditions, expressed as ð1þi�zÞc jz¼0;a¼0,
leads to an implicit constraint for the momenta in the z
direction: �ðkzÞ :¼ m sinðkzaÞ þ kz cosðkzaÞ ¼ 0, where
m is the mass of the fermions [2]. The regularized Casimir
energy, after integration over the unconstrained directions,
can be written as

E ¼ �lim
s!0

�2s

2�

�ðs� 3=2Þ
�ðs� 1=2Þ

X
kz

ðk2z þm2Þ3=2�s; (1)

where s is a regulator, � is a renormalization scale, and the
sum is over the roots of �ðkzÞ ¼ 0. In the massless case,
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m ¼ 0, one finds E ¼ �7�2a�3=2880. When the fermion
mass is nonzero, the above expression (1) for the Casimir
energy can be recast in the following form,

E ¼ � 1

a3�2

Z 1

0
duu1=2ðuþ �Þðuþ 2�Þ1=2

� ln

�
1þ u

uþ 2�
e�2ðuþ�Þ

�
þ � � � ;

where we have introduced the dimensionless quantity
� ¼ ma. The dots represent terms that do not contribute
to the force. For � ¼ 0, the expression above reproduces the
massless result. When � � 0, the above integral can be
evaluated by expanding the integrand in the region of inter-
est. For � � 1, the force is exponentially suppressed.
Basically, � works as a modulating parameter for the
Casimir energy or force. For free fields, however, modula-
tions caused by a change in the mass cannot occur dynami-
cally (neither at zero nor at finite temperature or density)
since, in the absence of interactions, symmetry breaking
does not occur, and the mass is set by the chiral symmetry
at the level of the Lagrangian [6]. On the other hand, when
fermions are strongly interacting, chiral symmetry breaking
occurs dynamically. This generates a mass for the fermions
and is expected to induce a phase transition in the Casimir
force. In a Casimir-like setup, the problem becomes particu-
larly amusing since chiral symmetry breaking can be trig-
gered not only by thermodynamical effects but also by
changes in the geometry or topology of the system.

Such a mechanism is reminiscent of the mass generation
phenomena for self-interacting scalars in topologically non-
trivial spacetimes discussed, for instance, in Refs. [16–18].
There, it was a combination of scalar self-interactions and
nontriviality of the geometry responsible for the spontane-
ous symmetry breaking. Here, the mechanism is driven by
the breakdown of chiral symmetry due to thermal and
geometrical effects, and it is controlled by the appearance
of a condensate.

To illustrate this idea with a concrete computation, we
will consider the following theory:

L ¼ �c i��@
�c þ g

2N
ð �c c Þ2: (2)

At tree level, fermions are massless and the action is
invariant under discrete chiral symmetry, c ! �5c . N
represents the number of fermion degrees of freedom and
g is the coupling constant. In the following we will use the
path integral approach and introduce finite temperature
effects by means of the Matsubara formalism, t ! {�
with � 2 S1 of period � ¼ 2�=T, where T is the tempera-
ture and antiperiodicity conditions imposed on the fermi-
ons. The presence of the condensate, � ¼ �gh �c c i=N,
can be made explicit in the partition function Z using the
Hubbard-Stratonovich transformation,

Z ¼
Z

D½ �c ; c ; �� exp
�
i
Z

d�dvDLeff

�
;

where Leff ¼ �c i��@
�c � N

2g �
2 � � �c c . In the large-N

approximation, an expansion of the path integral gives

Z ¼ �
Z

dvD

�2

2g
þ lndetði��@� � �Þ þOð1=NÞ: (3)

The above functional determinant has to be computed
consistently with the boundary conditions imposed at the
plates. Approximate analytic expressions can be obtained
in specific regimes of temperature and separation [24].
Here, we prefer to use a fully numerical approach that
has the advantage of being more expedient and readily
applicable to all parameter ranges. This adopts the method
described in Refs. [25–27] to construct an appropriate
contour integral representation for the functional determi-
nant in (3), that we evaluate numerically after a convenient
contour deformation. Divergences are dealt with by means
of zeta function regularization, and finite temperature sum-
mations are carried out numerically. The theory (2) in four
dimensions is nonrenormalizable and requires the intro-
duction of a cutoff scale. Here, we will fix the coupling
constant and the renormalization scale to achieve a broken
symmetry phase at zero temperature in the absence of
boundaries. Since the effective potential rescales as � !
�Dþ1� under mass redefinition, mass ! �mass, (see
Sec. III of Ref. [24]), we may fix, without loosing general-
ity, the value of the renormalization scale (numerical value
is set to � ¼ 100) and express all quantities accordingly.
Our results are summarized in Figs. 1–5. Figure 1 shows

how the effective potential � (normalized by subtracting
its value �0 at � ¼ 0) changes with temperature when
the separation a is fixed. The right- (left-)hand panel refers
to small (large) values of the separation a, and chiral
symmetry breaking occurs via a first (second) order phase
transition. Figure 2 illustrates the opposite situation, that is,
the dependence of the effective potential on the separation a
for fixed temperature. The left-hand panel of Fig. 2 refers to
the case of very small temperature, while in the right-hand
panel we have set T close to its critical value in the absence
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FIG. 1 (color online). Temperature dependence of the effective
potential for fixed separation. The left-hand plot refers to the
case of infinitely large separation for which the phase transition
is second order. The curves refer (bottom to top) to the values of
T=Tcrit ¼ 0:00, 0.60, 0.80, 1.00, 1.17. The right-hand plot refers
to the case of small separation a� Tcrit ¼ 0:6 in which case
boundary effects are non-negligible and the phase transition
becomes first order. The curves refer (bottom to top) to T=Tcrit ¼
0:00, 0.76, 1.00, 1.13, 1.29.
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of boundaries. From Figs. 1 and 2 it is clear that a decrease
of a tends to increase the effective temperature of the
system. However, when the separation is small and both
geometrical and thermal effects are important, the phase
transition is a first order one, in contrast with a second order
transition expectedwhen changes are purely thermodynam-
ical and boundary effects negligible. In this sense, effects of
finite size for the present geometry seem to be more similar
to those of a chemical potential than of temperature.

The nature of the change in the order of the transition
can be better understood using the Ginzburg-Landau
expansion for the thermodynamic potential,

���0 ¼ c0ða; TÞ�2 þ c1ða; TÞ�3 þ c2ða; TÞ�4 þ � � � ;
where the coefficients ciða; TÞ are dimensionful functions
of the temperature and separation and depend on the
geometry, topology, and the boundary conditions. In the
absence of boundaries, i.e., for a ! 1, chiral symmetry,
� $ ��, prohibits the appearance of odd powers in the
above expansion and guarantees the coefficients associated
with such terms to vanish, leading to a second order phase
transition. In the present case, however, dimensional
inspection indicates the presence of terms proportional

to a�1�3, and explicit computation of the associated coef-
ficient shows that they do not vanish (see Ref. [24]). This
causes the transition to change to first order. A deeper
connection can be drawn using the Schwinger–De Witt
expansion that relates the coefficients ciða; TÞ to the heat-
kernel coefficients 	i=2 associated with the operator in (3),

ciða; TÞ / 	i=2 (see Ref. [28]). In this way, it is possible to

see that odd powers of the condensate in the Ginzburg-
Landau expansion are accompanied by half-integer (bound-
ary) heat-kernel coefficients. These (see Ref. [26] for explicit
expressions of 	i=2 and Ref. [29] for a good discussion in

relation to the Casimir effect) are related to the boundary
geometry, topology, and also to the boundary conditions that,
in the present situation, break chiral symmetry.
The above results suggest that simultaneous changes in

temperature and separation may have interesting effects. In
fact, if a decrease in temperature typically pushes down the
potential and tends to bring the system into a broken phase
with a nonvanishing condensate, a decrease in distance has
the opposite effect. Therefore, by moving appropriately on
the (a-T) plane, it is possible to compensate thermal with
geometrical changes. This may result in a peculiar phase
diagram with the system moving towards a broken chiral
symmetry phase despite an increase in temperature. An
example of this sort is shown in Fig. 3. To illustrate this
point, let us first look at the left-hand panel of Fig. 3. The
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FIG. 3 (color online). The figure shows how the effective
potential changes when both temperature and separation de-
crease linearly according to Tð
Þ ¼ u� v
 and að
Þ ¼
q� p
, where u, v, q, p are constants and 
 is varied. In the
left- (right-)hand panel we have set u ¼ q ¼ 2 and v ¼ p ¼ 1
(u ¼ p ¼ 1 and 1=v ¼ q ¼ 30). The curves 1–6 in the left-
(right-)hand panel correspond, respectively, to the values of 
 ¼
�0:5, 0.095, 1.15, 1.55, 1.638, 1.7 (
 ¼ �60:0, �44:0, 15.0,
29.4, 29.64, 29.72).
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FIG. 4 (color online). aT phase diagram. The thick dashed
(red) curve represents the critical line (the blue dots superposed
are calculated numerically). The dots connected by the straight
dotted brown (dot-dashed green) line refer to the values of a and
T used in the left- (right-)panel in Fig. 3.
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FIG. 2 (color online). Separation dependence of the effective
potential at fixed temperature. The left-hand plot refers to the
case of small temperature (acrit � T ¼ 0:003) and the phase
transition is first order. The curves (bottom to top) refer to the
following values: a=acrit ¼ 100, 2.79, 1.39, 1.00, 0.83. In the
right-hand plot we have set the temperature close to its critical
value in the absence of boundaries and the curves refer (bottom
to top) to a� Tcrit ¼ 247:00, 7.41, 3.70, 2.47, 1.85.
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FIG. 5 (color online). Left: Behavior of the condensate when
temperature and separation change as in Fig. 3. The curves refer to
the following choices of the parameters: (0) u ¼ p ¼ 1,
q ¼ 1=v ¼ 30; (1) u ¼ p ¼ 1, q ¼ 1=v ¼ 1; (2) u ¼ p ¼ 1,
q ¼ 1=v ¼ 0:7; (3) u ¼ p ¼ 1, q ¼ 1=v ¼ 0:5. Right: Casimir
pressure (Pc ¼ Fc=S) for three illustrative cases. Temperature and
separation change as in Fig. 3with (1)u ¼ p ¼ 1,q ¼ 1=v ¼ 30;
(2) u ¼ p ¼ 1, q ¼ 1=v ¼ 1; (3) u ¼ p ¼ 1, q ¼ 1=v ¼ 0:7.
The orange continuous curve refers to the massless case.
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initial configuration (curve 1) is obtained by setting T large
and a small. In this case, the effective temperature is high
and the system is in a symmetric phase. We then start
decreasing both temperature and separation. [For illustra-
tion, we vary a and T linearly, according to the relations
Tð
Þ ¼ u� v
 and að
Þ ¼ q� p
, where we set u ¼
q ¼ 2, v ¼ p ¼ 1 and change 
]. The initial configuration
(curve 1) refers to 
 ¼ �0:5. Increasing 
 (i.e., lowering
temperature and separation), the effective potential moves
downwards and we encounter a second order phase tran-
sition for 
 ’ 0:095 (curve 2). A further increase in 
 keeps
pushing the potential down and the condensate up until �
reaches a maximum (for 
 ’ 1:15, curve 3). In this process,
the breakdown of chiral symmetry is driven by the tem-
perature, assisted by effects of finite size that are respon-
sible for the change in the order of the transition. From this
configuration, a further increase in 
 changes the tendency
of the potential that, despite the decrease in temperature,
starts to move upwards (and in � that descends from
the maximum). When T and a reach a critical value (for

 ’ 1:638, curve 5), another second order transition
occurs, restoring chiral symmetry. In this region, it is the
separation that dominates over the temperature. Starting
from a configuration where the initial separation is large, it
is possible to reduce the effects of the boundaries adjusting
the order of the first phase transition, essentially, to a first
order one. The right-hand panel of Fig. 3 refers to this case.
Figure 4 shows the phase diagram in the region of small a
(left-hand panel) and over a larger range of separation
(right-hand panel). The dots connected by the straight lines
refer to the values of a and T used in Fig. 3. Finally, in the
left-hand panel of Fig. 5 we illustrate how the condensate
changes when both T and a change linearly as in Fig. 3.

The effects of chiral symmetry breaking on the Casimir
effect should now be clear. In essence, for a system of
strongly interacting fermions, it is chiral symmetry that
controls the fermion mass through the appearance of a
nonvanishing condensate and, in turn, the parameter
� ¼ ma, related to the suppression factor in the Casimir
force. With the previous results in hands, we have com-
puted the Casimir force between the layers, and results are
shown in the right-hand panel of Fig. 5. The thick orange
curve represents the pressure in the massless case, while
dashed curves refer to the interacting case with T and a
varied as before. Because of the temperature dependence
of the condensate, we, in fact, expect two phase transitions:
one at smaller and one at larger values of a. However,
effects due to the transition at the smaller value of a are
negligible as it can be understood by estimating the
parameter � that is bounded by the separation times the
value attained by the condensate in the infinite volume
limit, i.e., � < Oð10�1Þ. On the other hand, the transition
occurring at the larger values of the separation leads to
sizable effects. Notice, also, that when the initial separation
is larger [see curve 1 in Fig. 5 (right)], suppression of the

Casimir force occurs over all the separation range. For the
case of initial smaller separation [see curve 3 in Fig. 5
(right)], the suppression occurs over a smaller separation
range and the phase transition is clearly visible.
We would like to note here that a behavior similar to

Fig. 3 has been predicted to occur in bilayer graphene
with interlayer pairing of electrons and it is expected to
induce an exotic, possibly experimentally observable, form
of interlayer superconductivity [30]. Whether an actual
Casimir effect experiment using bilayer graphene (or other
strongly coupled fermionic materials) can be performed
leading to any observable effect of fermion quantum
vacuum fluctuations is currently under investigation.
Certainly, it seems interesting to examinewhether quantum
vacuum energy effects, indirectly, may affect the properties
of these systems (e.g., stability, separation-temperature
correlations, etc.), manifesting yet a new facet of symmetry
breaking, and, eventually, indicate new directions of study
for the Casimir effect.
Our goal was to look at the interplay between chiral

symmetry breaking and boundary effects in the tractable
and nontrivial case of two parallel layers, for a system of
strongly coupled fermions. A number of intriguing features
arose. First, finite size effects, for the present setup, tend to
change the order of the phase transitions from second order
(in the infinite volume limit) to first order, rendering effects
of finite size for the present setup more similar to those of a
chemical potential than of temperature. Whether and how
an appropriate choice of geometry, topology, and boundary
conditions may preserve chiral symmetry is certainly an
important question that could be relevant in the context
of finite temperature or density QCD. Second, we have
shown that simultaneous changes in temperature and sepa-
ration may induce an interesting behavior in the thermal
dependence of the potential and of the condensate that
resembles what has been discussed earlier for the case of
bilayer graphene. This similarity provides, in our opinion,
motivation to consider these issues further. Finally, we
have shown how chiral symmetry directly influences the
Casimir effect, inducing different phases in the force sepa-
rated by critical lines providing a new example linking the
phenomena of symmetry breaking with quantum vacuum
energy effects.
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