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We present and study a minimal structure-based model for the self-assembly of peptides into ordered

�-sheet-rich fibrils. The peptides are represented by unit-length sticks on a cubic lattice and interact by

hydrogen bonding and hydrophobicity forces. Using Monte Carlo simulations with >105 peptides, we

show that fibril formation occurs with sigmoidal kinetics in the model. To determine the mechanism of

fibril nucleation, we compute the joint distribution in length and width of the aggregates at equilibrium,

using an efficient cluster move and flat-histogram techniques. This analysis, based on simulations with

256 peptides in which aggregates form and dissolve reversibly, shows that the main free-energy barriers

that a nascent fibril has to overcome are associated with changes in width.
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Many proteins and peptides share the ability to self-
assemble into amyloid fibrils, aggregates with a cross-�
structure and remarkable mechanical properties, that are
associated with a range of disorders as well as with func-
tional roles [1,2]. The formation of amyloid fibrils, usually
monitored by thioflavin T (ThT) fluorescence, is known to
occur with reproducible sigmoidal kinetics [3], indicating
a nucleation-dependent process. A powerful method for
interpreting the experimental kinetic profiles is by means
of rate equations [4]. This approach can reveal some gen-
eral properties of intermediate species participating in the
growth process. It has proven useful for some related self-
assembly phenomena as well, such as hemoglobin S aggre-
gation [5] and microtubule assembly [6]. Another method
to elucidate the mechanisms of amyloid formation is by
phase equilibria analysis [7].

By coarse-grained structure-based approaches [8],
additional insights have been gained into the nucleation
of amyloid fibrils [9–14]. Fibrillation pathways involve,
however, a host of different aggregated species of widely
varying size, and studying the competition among these
species without restrictive assumptions represents a chal-
lenge even in coarse-grained models.

In this Letter, we introduce a minimal structure-based
model that describes amyloid fibril formation in terms of
physically inspired peptide-peptide interactions and yet
allows for representative sampling of the model state
space for relatively large systems. Using flat-histogram
methods [15,16] and an efficient cluster move resem-
bling the Swendsen-Wang algorithm for spin systems
[17], we determine equilibrium distributions in size
and shape of the aggregated structures, in order to elu-
cidate the free-energy landscape that a nascent fibril has
to navigate.

We consider N identical peptides, represented by unit-
length sticks on a periodic cubic lattice with dimensions
L3. We assume that the internal dynamics of a peptide are

fast compared to the time scales for fibril formation, and
therefore can be averaged out.
Each peptide i is centered at a lattice site ri, and two

peptides cannot simultaneously occupy the same site.

Associated with each peptide are two unit vectors b̂i

and p̂i that can point in any of the six lattice directions

[Fig. 1(a)]; b̂i represents the N-to-C backbone orientation,
whereas �p̂i are the directions in which hydrogen bonds

can form. The vectors b̂i and p̂i are perpendicular, leaving
a total of 24 possible orientations of a peptide. The vectors

ŝi ¼ b̂i � p̂i and �ŝi represent side-chain directions. The
þŝi and �ŝi sides of a peptide are assumed to have differ-
ent interaction properties and are referred to as hydro-
phobic and polar, respectively.
The energy function describing the interactions between

the peptides is assumed pairwise additive, E ¼ P
i<j�ij,

where �ij � 0. The pair potential �ij is nonzero only if

(i) peptides i and j are nearest neighbors on the lattice, and

(ii) b̂i and b̂j are perpendicular to rij ¼ rj � ri and aligned

either parallel or antiparallel to each other. When these
conditions are met, we set �ij ¼ �1 except in the three

cases illustrated in Fig. 1. The first two cases correspond to
parallel [Fig. 1(b)] and antiparallel [Fig. 1(c)] � structure,
respectively, and the third [Fig. 1(d)] to hydrophobic side-
chain attraction. The corresponding interaction energies
are given by

�ij ¼

8
>><

>>:

�ð1þ apÞ parallel� structure

�ð1þ aapÞ antiparallel� structure

�ð1þ bÞ hydrophobic attraction:

(1)

The hydrophobic attraction is included because of evi-
dence suggesting that a pairwise (steric zipper) �-sheet
organization is a common architecture for the core of
amyloid fibrils [18]. The b parameter must not be too large,
in order for extended � sheets to form. Because the �
sheets often are parallel in amyloid fibrils, we take

PRL 110, 058101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 FEBRUARY 2013

0031-9007=13=110(5)=058101(4) 058101-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.058101


ap > aap, but the model can also be studied for aap > ap.

In what follows, for simplicity, we stick to a single
parameter set, namely ap ¼ 5, aap ¼ 3, and b ¼ 1. With

this choice, the parallel �-strand organization dominates,
but the suppression of antiparallel strand pairs is not pro-
hibitively strong.

We simulate the thermodynamics of this model using
single-peptide as well as cluster moves. A cluster update
makes it possible for aggregates to move without having
to be first dissolved and then reassembled. To be able to
also split and merge aggregates, we follow a stochastic
Swendsen-Wang–type cluster construction procedure [17].
The construction is recursive and begins by picking a random
first cluster member, i. Then, all peptides j interacting with
peptide i (�ij < 0) are identified and added to the cluster with

probability pij ¼ 1� e��ij , where � ¼ 1=kBT is inverse

temperature. This step is iterated until no cluster member
has any unchecked interaction partner. Finally, the resulting
cluster is subject to a trial rigid-body translation or rotation,
drawn from a symmetric distribution, which is accepted
whenever it does not cause any steric clashes. It can be
verified that this algorithm fulfills detailed balance with
respect to the canonical ensemble p� / e��E� .

To further enhance the sampling, we employ
generalized-ensemble methods [15,16], along with
reweighting techniques [19]. After estimating the density
of states gðEÞ by the Wang-Landau method [16], we simu-
late the ensemble p� / 1=gðE�Þ [15], where the distribu-
tion of E is flat. This approach was recently used for
atomic-level aggregation simulations [20] and is useful
for the present system as well, which displays phase coex-
istence at the fibrillation temperature, Tm (see below). Our
simulations sample a limited energy range, Emin < E � 0.
The cutoff Emin is needed to prevent the formation of
artificial cyclic aggregates, which otherwise may occur
due to the periodic boundary conditions, but is sufficiently
low to permit studies of temperatures in the fibrillar phase.

The above cluster update can be adapted for the
generalized-ensemble simulations by adding an accept or
reject step, with acceptance probability paccð� ! �0Þ ¼
min½1; gðE�Þe��E�=gðE�0 Þe��E�0 �. Here, � changes its
meaning to become a tunable algorithm parameter. We
did not fine-tune �, but expect the optimal � to be in the
neighborhood of �m ¼ 1=kBTm, as supported by prelimi-
nary runs.
Using these methods, we studied the thermodynamics of

the model for several different system sizes. Here, we focus
on the results obtained for N ¼ 256 and L ¼ 64, corre-
sponding to a peptide concentration of � � 10�3 per unit
volume. This system size would have been very time-
consuming to study with standard Monte Carlo methods.
In our simulations, two distinct major phases occur: a

high-energy phase dominated by small aggregates and a
low-energy phase where large fibril-like aggregates are
present. As displayed in Fig. 2(a), at the midpoint tem-
perature, Tm � 0:6714, the energy distribution is bimodal,
showing that the two phases coexist. Figure 2(b) shows the
aggregate mass distribution, pðmÞ, at Tm, which gives the
probability for a peptide to be part of an aggregate with m
peptides (m ¼ 1 corresponds to free monomers). Like the
energy distribution, pðmÞ is bimodal. The mass fractions of
aggregates with m � 6, 6<m � 62, and m> 62 are
81.4%, 1.9%, and 16.7%, respectively. Small aggregates
are present in both phases and constitute a large fraction of

FIG. 1 (color online). Schematic illustration of the geometry
and interactions of the model. (a) The orientation of a peptide is
defined by the backbone vector b̂i (thick line) and the hydrogen-
bond direction p̂i (thin line). The side-chain direction ŝi (dots) is
given by ŝi ¼ b̂i � p̂i. (b) Parallel � structure. (c) Antiparallel �
structure. (d) Hydrophobic attraction. The �-structure definitions
are such that a � sheet has one hydrophobic and one polar side.
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FIG. 2 (color online). Overall thermodynamic properties of the
N ¼ 256, L ¼ 64 system at Tm � 0:6714. (a) Energy distribu-
tion. The sampled range is �1300< E � 0. Smoothing was
applied to remove short-scale irregularities in gðEÞ. (b) Mass
fraction of aggregates with mass m, pðmÞ, against m. Summed
probabilities for three regions in m are indicated. Statistical
errors on both pðEÞ and pðmÞ are comparable to the line width.
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the total mass at Tm (see also Fig. S1 in the Supplemental
Material [21]).

At first glance, the bimodality of pðmÞ may seem to
indicate that fibril nucleation occurs when a critical mass is
reached. However, this picture is geometrically incom-
plete, because the species involved are neither strictly
one dimensional nor sharing one common shape, such as
spherical. A simple but useful way to extend the analysis
is via the inertia tensor. As measures of the length and
width of an aggregate, we define l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12�1 þ 1
p

and w ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�2 þ 1

p
, where �1 � �2 are eigenvalues of the inertia

tensor. In our model, there is no interaction between lon-
gitudinally aligned peptides to support growth in a third
dimension. With these definitions, for a rectangular aggre-
gate, l and w are the numbers of peptide layers in the two
directions.

Figure 3 shows the probability pðl; wÞ for a peptide to be
part of an aggregate with length l and width w, at Tm.
Consistent with Fig. 2(b), pðl; wÞ is highest for aggregates
with l small and w � 1. Among larger aggregates, a clear
preference can be seen for even over odd values of w,
reflecting a pairwise �-sheet organization, although aggre-
gates with six or more layers are severely constrained by
finite-size effects. A second trend is that single-layer
aggregates are shorter than two-layer ones, which in turn
are shorter than those with four layers. We expect this
trend to persist beyond the four-layer level if the system
is sufficiently large. These overall features of pðl; wÞ are
likely to be quite robust, although the locations of the
different maxima depend on both T and �.

The shape of pðl; wÞ has implications for how fibrils
nucleate and grow in the model. It suggests that the main
free-energy barriers faced by a growing aggregate are
associated with changes in width, and it must increase in
width to be able to grow.

Having examined the thermodynamics of the model,
we now turn to the aggregation kinetics, studied using
constant-temperature Monte Carlo dynamics. Because of
evidence that amyloid growth occurs by monomer addition
[22], here we use single-peptide moves only. The simula-
tions start from random initial conditions and the tempera-
ture is T ¼ 0:66.

We first stick to the system size N ¼ 256 and L ¼ 64,
which is useful for examining the formation of individual
fibrils. Figure 4(a) shows the mass of the largest aggregate,
m0ðtÞ, against Monte Carlo time t, in two representative
runs. Both runs exhibit an apparent waiting phase before
a large aggregate suddenly appears. Unlike aggregates
occurring in the initial phase, this large aggregate is stable
to dissolution. Near the jump in mass, a switch occurs in
the width of the largest aggregate, w0. With a tiny fraction
of exceptions, w0 is below 3.5 before and above 3.5 after
the switch point. Interestingly, as indicated in Fig. 4(a), this
switch in width occurs immediately before the sharp
increase in mass. This suggests that the change in width
is a critical event that renders the aggregate growth com-
petent. This finding matches perfectly with the shape of the
pðl; wÞ distribution (Fig. 3).
The kinetics can also be studied for much larger systems,

which makes it possible to test in a direct manner whether
or not the model captures the sigmoidal behavior observed
experimentally. Figure 4(b) shows the time evolution of
the mass fraction of fibril-like aggregates, xfðtÞ, in 10

FIG. 3 (color online). Mass fraction of aggregates with length l
and width w, pðl; wÞ, at Tm for N ¼ 256 and L ¼ 64.
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FIG. 4 (color online). Monte Carlo (MC) kinetics at T ¼ 0:66.
(a) Mass of the largest aggregate, m0ðtÞ, against time t, in
two representative runs with N ¼ 256 and L ¼ 64. Circles
indicate where the width of the largest aggregate, w0, switches
from w0 < 3:5 to w0 > 3:5. Time is given in sweeps, where one
sweep consists of N single-peptide updates. (b) Mass fraction of
fibril-like aggregates, xfðtÞ, in 10 independent runs with N ¼
131072, L ¼ 512. Inset: Log-log plot of the average over the 10
runs versus t. The dashed line corresponds to a cubic growth,
xfðtÞ / t3.
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independent runs for N ¼ 131072 and L ¼ 512 (same
concentration as before). We define an aggregate as
fibril-like if w> 3:5, w being the width, which ensures
stability to dissolution.

Comparison of these 10 runs [Fig. 4(b)] shows that, for
this system size, the kinetics are indeed sigmoidal and
highly reproducible, as observed in bulk experiments [3].
At the end of the runs, the simulation box typically
contains between 40 and 50 spontaneously formed fibrils
(see Fig. S2 in the Supplemental Material [21]), with an
average length and width of l� 210 and w� 7, respec-
tively. Inspection shows that the nucleation of new fibrils
stops after roughly 107 Monte Carlo sweeps. Existing
fibrils continue to grow beyond that point, but eventually
xfðtÞ levels off, due to monomer depletion.

Our kinetic simulations, which do not include fragmen-
tation events, may be compared to the classical Oosawa
theory for homogeneous polymerization [23]. In particular,
this theory predicts the initial growth to be quadratic in time.
Our data [Fig. 4(b)] are well described by a cubic growth for
small t, xfðtÞ / t3. That the exponent appears to be different

than it is in the Oosowa theory is expected, because nuclea-
tion involves more than a single step in our model.

In this Letter, we have presented a simple model for
amyloid formation, where the nucleation of fibrils can be
studied without any prior assumptions on the structure of the
aggregates involved. The formation of aggregated structures
with a few �-sheet layers has been observed in many pre-
vious simulations, also at the atomic level [24,25]. Here, we
have used systemsmuch larger than in previous studies, to be
able to examine the interplay between aggregate length and
width in fibril nucleation. Our study shows that in this model
the width of a growing aggregate plays a key role; to reach a
given length, a minimumwidth is required, and to increase in
width the aggregate has to overcome major free-energy
barriers. Because of these barriers, the nucleation of a fibril
occurs in distinct steps. The present study focused on the
spontaneous aggregation of free peptides, but the model may
also be useful for studying surface-catalyzed aggregation
and the effects of a confining geometry.

As in any model, simplicity is both a strength and a
limitation. The final width of a growing fibril depends most
likely on geometric factors left out in our model, such as
twist. The question of what sets the final width is therefore
beyond the scope of the present work. The assumption that
internal degrees of freedom can be integrated out may be a
good approximation for small flexible peptides, but is
clearly poorly justified for a folded protein that has to
partially unfold before aggregation takes place. Our model
further ignores any possible cooperativity of the interac-
tions involved [26,27]. In our model, aggregation is a
highly cooperative process, although driven entirely by
pairwise additive interactions.

The simulations were performed at the LUNARC
facility, Lund University.
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