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We examine a minimal model for an active colloidal fluid in the form of self-propelled Brownian

spheres that interact purely through excluded volume with no aligning interaction. Using simulations and

analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequi-

librium active system undergoes an analog of an equilibrium continuous phase transition, with a binodal

curve beneath which the system separates into dense and dilute phases whose concentrations depend only

on activity. The dense phase is a unique material that we call an active solid, which exhibits the structural

signatures of a crystalline solid near the crystal-hexatic transition point, and anomalous dynamics

including superdiffusive motion on intermediate time scales.
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Active fluids composed of self-propelled units occur in
nature on many scales ranging from cytoskeletal filaments
and bacterial suspensions to macroscopic entities such as
insects, fish, and birds [1]. These systems exhibit strange
and exciting phenomena such as dynamical self-regulation
[2], clustering [3], anomalous density fluctuations [4],
unusual rheological behavior [5–7], and activity-dependent
phase boundary changes [8]. Motivated by these findings,
recent experiments have focused on realizing active fluids
in nonliving systems, using chemically propelled particles
undergoing self-diffusophoresis [9–11], Janus particles
undergoing thermophoresis [12,13], as well as vibrated
monolayers of granular particles [14–16].

In this Letter we explore a minimal active fluid model: a
system of self-propelled smooth spheres interacting by
excluded volume alone and confined to two dimensions.
Unlike self-propelled rods [17–21], these particles cannot
interchange angular momentum and thus lack a mutual
alignment mechanism. Recent simulation and experimen-
tal studies have shown that this system exhibits giant
number fluctuations [22] and athermal phase separation
[22,23] that are characteristic of active fluids [4,24,25].
Here we employ extensive Brownian dynamics simulations
to characterize the phase diagram of this system and we
develop an analytic model that captures its essential fea-
tures. We show that this nonequilibrium system undergoes
a continuous phase transition, analogous to that of equilib-
rium systems with attractive interactions, and that the
phase separation kinetics demonstrate equilibriumlike
coarsening. These structural and dynamic signatures of
phase separation and coexistence enable an unequivocal
definition of phases in this nonequilibrium, active system.
Finally, we find that the dense phase is a dynamic new form
of material that we call an ‘‘active solid.’’ This material
exhibits structural properties consistent with a 2D colloidal
crystal near the crystal-hexatic transition point [26,27],
but is characterized by such anomalous features as

superdiffusive transport at intermediate time scales and a
heterogeneous and dynamic stress distribution (see Fig. 1).
Model and simulation method.—Our system consists of

smooth spheres immersed in a solvent and confined to a
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FIG. 1 (color online). A visual summary of our results. Top
left: beyond critical density and activity levels the active colloi-
dal fluid separates into dense and dilute phases. The clusters
coarsen over time (see S1 in the Supplemental Material in [34]).
Top right: the static structure factor SðkÞ ¼ 1
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stricted to the interiors of large clusters. These signatures resemble
those of a high temperature colloidal crystal near the crystal-
hexatic phase transition. Bottom left: a heat map of the pressure in
the active solid material. It is heterogeneous and highly dynamic,
indicating that external stresses would produce a complex re-
sponse. Bottom right: log-log plot of the mean square displace-
ment of a tagged particle in the active solid. At intermediate time
scales, it exhibits anomalous superdiffusive transport.
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plane, similar to experimental systems of self-propelled
colloids sedimented at an interface [23]. Each particle is
self-propelled with a constant force, and interactions
between particles result from isotropic excluded-volume
repulsion only. We include no mechanism for explicit
alignment or transmission of torques between particles.

The state of the system is represented by the positions
and self-propulsion directions fri; �igNi¼1 of all particles.

Their evolution is governed by the coupled overdamped
Langevin equations,

_r i ¼ D�½FexðfrigÞ þ Fp�̂i� þ
ffiffiffiffiffiffiffi
2D

p
�T
i ; (1)

_� i ¼
ffiffiffiffiffiffiffiffi
2Dr

p
�R
i : (2)

Here, Fex is an excluded-volume repulsive force given
by the WCA potential Vex ¼ 4�½ð�rÞ12 � ð�rÞ6� þ � if

r < 2ð1=6Þ, and zero otherwise [28], with � the nominal
particle diameter. We use � ¼ kBT, but our results should
be insensitive to the exact strength and form of the poten-
tial. Fp is the magnitude of the self-propulsion force which,

in the absence of interactions, will move a particle with
speed vp ¼ D�Fp, �̂i ¼ ðcos�i; sin�iÞ, and � ¼ 1

kBT
. D

and Dr are translational and rotational diffusion constants,
which in the low-Reynolds-number regime are related by
Dr ¼ 3D

�2 . The � are Gaussian white noise variables with

h�iðtÞi ¼ 0 and h�iðtÞ�jðt0Þi ¼ �ij�ðt� t0Þ.
We nondimensionalized the equations of motion using

� and kBT as basic units of length and energy, and � ¼ �2

D

as the unit of time. Simulations employed the stochastic
Runge-Kutta method [29] with maximum time step
2� 10�5�. Simulations mapping the phase diagram were
run with 15 000 particles until time 100�, while larger
systems (up to 512 000 particles) were used to explore
kinetics and material properties. The simulation box was
square with periodic boundaries, with its size chosen to
achieve the desired density. The system is parametrized by
two dimensionless values, the packing fraction � and the
Péclet number, which in our units is identical to the non-
dimensionalized velocity (Pe ¼ vp

�
� ). In this work, we

varied � from near zero to the hard-sphere close-packing
value �cp ¼ 	

2
ffiffi
3

p , and Pe from zero to 150.

Phase separation.—We first show that our results are
consistent with prior simulations [22] and confirm that this
system, despite the absence of aligning interactions, shows
the signature behaviors of an active fluid. In particular, the
active spheres undergo nonequilibrium clustering (Fig. 1)
similar to other model active systems [3,20,21,30].

We establish that this clustering is indeed athermal
phase separation by measuring the density in each phase
at different parameter values [Fig. 2(a)]. We observe a
binodal envelope beyond which the system separates into
two phases whose densities collapse onto a single coexis-
tence curve which is a function of activity alone. The phase
diagram is thus analogous to that of an equilibrium system

of mutually attracting particles undergoing phase separa-
tion, with Pe (playing the role of an attraction strength) as
the control parameter. This surprising result contradicts the
expectation that increased activity will destabilize aggre-
gates and suppress phase separation (as seen in Ref. [31])
and indicates that the effects of activity cannot be
described by an ‘‘effective temperature’’ in this system.
Additionally, we identify a critical point at the apex of

the bimodal (near Pe ¼ 50,� ¼ 0:7). In the vicinity of this
point, the system exhibits equilibriumlike critical phe-
nomena which will be detailed in a future publication.
The phase-separated steady state.—To characterize the

steady state, we measured the fraction of particles in the
dense phase at time 100� (Fig. 3). In contrast with recent
work [22] which placed the phase transition boundary at a
constant density, we observe that this cluster fraction is a
nontrivial function of the system parameters fcðPe; �Þ. To
understand this relationship we developed a minimal
model in which this function can be found analytically.
Let us assume the steady state contains a macroscopic
cluster which we take to be close packed. Particles in the
cluster are stationary in space but their �i continue to
evolve diffusively. We treat the gas as homogeneous and
isotropic, and assume that a particle colliding with the
cluster surface is immediately absorbed.
Within this model, we can write the rate of absorption of

particles of orientation � from the gas phase as kinð�Þ ¼
1
2	 
gvp cos�, where 
g is the gas number density.

Integrating yields the total incoming flux per unit length:

kin ¼ 
gvp

	 . To estimate the rate of evaporation, note that a

particle on the cluster surface will remain there so long as
its self-propulsion direction remains ‘‘below the horizon’’,
i.e., n̂ � �̂ < 0, where n̂ is normal to the surface. When its
direction moves above the horizon, it immediately escapes
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FIG. 2 (color online). (a) Phase densities as a function of
Péclet number (Pe) for a range of overall �. At low Pe the
system is single-phase, while at increased Pe it phase-separates.
The coexistence boundary is analogous to the binodal curve of
an equilibrium fluid, with Pe acting as an attraction strength.
(b) Observed density distributions for various Péclet numbers. In
the single-phase region below Pe � 50, Pð�Þ is peaked about the
overall system density (here � ¼ 0:65). It broadens and flattens
as the critical point is approached, and becomes bimodal as the
system phase separates.

PRL 110, 055701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 FEBRUARY 2013

055701-2



and joins the gas. This rate can be calculated by solving the
diffusion equation in angular space with absorbing bounda-
ries (for clusters large enough to treat the interface as
flat, at � 	

2 ) and initial condition given by the distribution

of incident particles: @tPð�; tÞ ¼ Dr@
2
�Pð�; tÞ, with

Pð� 	
2 ; tÞ ¼ 0, and Pð�; 0Þ ¼ 1

2 cos�. Further, the depar-

ture of a surface particle creates a hole through which
subsurface particles (whose �̂i may point outwards) can
escape. With � we denote the average total number of
particles lost per escape event, which we treat as a fitting

parameter. The total outgoing rate is then kout ¼ �Dr

� .

Equating kin and kout yields a steady-state condition for

the gas density: 
g ¼ 	�Dr

�vp
. 
g can be eliminated in favor

of fc, yielding (in terms of our dimensionless parameters),

fc ¼ 4�Pe� 3	2�

4�Pe� 6
ffiffiffi
3

p
	��

: (3)

This function is plotted in Fig. 3 with � ¼ 4:5, in good
accord with our simulation results. Further, the condition
fc ¼ 0 allows us to deduce a criterion for the onset of
clustering. Restoring dimensional quantities, this condition
gives ��vp �Dr. Note that ��vp is a collision fre-

quency; thus, the system begins to cluster at parameters
for which the collision time becomes shorter than the
rotational diffusion time.

The mechanism we have presented here is purely kinetic
and requires only an intuitive picture of local dynamics at
the interface. An alternative view has been described by
Tailleur and Cates [32,33] who subsume all interactions
into a density-dependent propulsion velocity vð
Þ which
decreases with density as collisions become more frequent.
From this they construct an effective free energy which
shows an instability in the homogeneous phase if vð
Þ falls
quickly enough. In a sense our kinetic model represents an
extreme case of this picture in which vð
Þ contains a step
function such that free particles are noninteracting, and

particles in a cluster are completely trapped (see Fig. S7 in
the Supplemental Material [34]).
Structure of the dense phase.—Since the system is com-

posed of monodisperse spheres, the dense phase is suscep-
tible to crystallization [35]. As shown in Fig. 1 the static
structure factor of the cluster interior shows a liquidlike
isotropy at low Pe, but develops strong sixfold symmetry as
activity is increased. Further, the radial distribution func-
tion shows clear peaks at the sites of a hexagonal lattice
(see Fig. S6 in the Supplemental Material [34]) which
sharpen and increase in number as Pe is raised. We also
measured the bond-orientational order parameter q6ðiÞ ¼

1
jN ðiÞj

P
j2N ðiÞei6�ij , whereN ðiÞ runs over the neighbors of

particle i (defined as being closer than a threshold dis-
tance), and �ij is the angle between the i-j bond and an

arbitrary axis (Fig. 4). We find a structure characterized by
large regions of high order with embedded defects that are
predominantly 5–7 pairs [Fig. 4(a) inset and S4 in [34]].
Next, we examined the correlation function hq�6ðrÞq6ðr0Þi
(Fig. 4) which exhibits a liquidlike exponential decay for
systems of low activity, while at higher activity the decay
slows to a power law which is indicative of a hexatic [36].
A further transition to a crystal-like plateau is observable in
larger systems (see Fig. 4 and S9 and S10 in the
Supplemental Material [34]). In all cases, this material is
unique in that it is held together by active forces alone, and
that the arrest of motion is due to frustration. In this sense it
is similar to amorphous materials such as granular packs as
reflected by the highly heterogeneous stress distribution
(Fig. 1) [37].
Dynamics in the dense phase.—Within the active solid

material, self-propulsion forces continuously evolve by
rotational diffusion, breaking local force balance and lead-
ing to defect formation and migration (see S4 in [34]).

Single phase

Phase separated

0 20 40 60 80 100120140
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe

0

1

0 20 40 60 80 100120140
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe

0

1

FIG. 3 (color online). Left: contour map of cluster fraction
fcðPe; �Þ measured from simulations. The dashed curve marks
the approximate location of the binodal. Right: cluster fraction as
predicted by our analytic theory [Eq. (3)]. These plots have been
restricted to packing fractions that are low enough for the
assumptions of our kinetic model to be valid, and for cluster
identification to be unambiguous.
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FIG. 4 (color online). (a) Defect structures in a large cluster.
Regions of high crystalline order (white) coexist with isolated
and linear defects (dark). The color of each particle indicates its
jq6j. Inset shows pairs of 5=7 defects. (b) Log-log plot of the
correlation function hq�6ðrÞq6ðr0Þi for clusters at various Péclet

numbers in systems with N ¼ 128 000, showing a transition
from liquidlike exponential to hexaticlike power-law decay as
activity is increased. For systems with N ¼ 512 000 (black
dashed line), a crystal-like plateau is also observed.
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A compelling way to view the motion produced by this
athermal process is a process is a simulated fluorescence
recovery after photobleaching (FRAP) experiment [38], in
which particles within a contiguous region are tagged,
making subsequent mingling of tagged and untagged par-
ticles visible (see S3 in the Supplemental Material [34]).
To quantify this behavior, we measured the mean square
displacement (MSD) of particles in the cluster interior. As
shown in Fig. 1, we observe subdiffusive motion on short
time scales, followed by a superdiffusive regime, returning
to diffusive motion on long time scales. The exponents of
the subdiffusive and superdiffusive motion ( 12 and 3

2 ,

respectively) are well-conserved across a wide range of
propulsion strengths. Note that an isolated self-propelled
particle will exhibit diffusive, ballistic, and diffusive
behavior on time scales t < 4D

v2
p
, 4D

v2
p
< t < 1

Dr
and t > 1

Dr
,

respectively (see Fig. S5 in [34]). These dynamical regimes
are modified by the active solid environment; in particular,
the ballistic regime is modulated by ‘‘sticking’’ events as
the particle is localized in crystal domains, resulting in the
observed Lévy-flight-like behavior [39,40].

Kinetics of phase separation.—Despite the athermal
origins of phase separation in this system, simulations
quenched to parameters within the binodal curve experi-
ence familiar phase separation kinetics (Fig. 5). Systems
quenched close to the binodal exhibit a nucleation delay
which can be long enough that artificial seeding is neces-
sary for phase separation to be computationally accessible.
Systems quenched more deeply undergo spinodal decom-
position, leading to a coarsening regime in which the mean

cluster size scales surprisingly as tð1=2Þ, with a correspond-

ing length scaleLðtÞ � tð1=4Þ (Fig. 5 inset, also see S8 in the
Supplemental Material [34]). This differs from the stan-
dard 2D coarsening exponents, but matches recent simula-
tion results for the Vicsek model and related active systems

[41]. This result should be viewed as preliminary due to the
limited range of our data, but nevertheless this unexpected
similarity between the coarsening of point-particles with
polar alignment and that of spheres with no alignment
suggests a deep relationship between these very different
types of systems. Future work is needed to uncover the
origins of these scaling exponents and their implications
for universality in active fluids.
Summary.—A fluid of self-propelled colloidal spheres

exhibits the athermal phase separation that is intrinsic to
active fluids and is a primary mechanism leading to emer-
gent structures in diverse systems [2,25]. We have shown
that the physics underlying this phase behavior can be
understood in terms of microscopic parameters. From a
practical perspective, our simulations show that the active
solid dense phase exhibits a combination of structural and
transport properties not achievable in a traditional passive
material. Further development of experimental realizations
of this system (e.g., Ref. [23])will advance the development
of materials whose phase behavior, rheology, and transport
properties can be precisely controlled by activity level.
This work was supported by NSF-MRSEC-0820492

(G. S. R., M. F.H., and A. B.), as well as NSF-DMR-
1149266 and NSF-1066293 and the hospitality of the
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was provided by the Brandeis HPC.
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