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We provide a joint theoretical and experimental investigation of the temperature dependence of the

collective oscillations of first sound nature exhibited by a highly elongated harmonically trapped Fermi

gas at unitarity, including the region below the critical temperature for superfluidity. Differently from

the lowest axial breathing mode, the hydrodynamic frequencies of the higher-nodal excitations show a

temperature dependence, which is calculated starting from Landau two-fluid theory and using the

available experimental knowledge of the equation of state. The experimental results agree with high

accuracy with the predictions of theory and provide the first evidence for the temperature dependence of

the collective frequencies near the superfluid phase transition.
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Collective oscillations provide powerful tools to under-
stand the physical behavior of quantum many-body sys-
tems from different points of view and to test fundamental
theories. On one hand, collective modes can be used to
explore different dynamical regimes of the system, such
as superfluid, collisional, or collisionless regimes, for both
Bose and Fermi statistics [1–4]. On the other hand, the
mode frequencies allow us to probe the equation of state
(EOS) of the system, including its temperature depen-
dence. Major benefits result from the high accuracies
attainable in the measurements of collective frequencies,
which often enable refined investigations of subtle interac-
tion effects.

The many-body physics of unitary Fermi gases, i.e., two-
component Fermi gases with infinite scattering length, has
attracted tremendous interest over the past decade [2–4].
The unitary Fermi gas is characterized by strong interaction
effects in the EOS [5–8] and reveals a unique universal
thermodynamic behavior [9]. Furthermore, at finite tem-
perature, the strong interactions favor the collisional hydro-
dynamic regime, differently from the common situation in
weakly interacting Bose gases. The low-frequency modes of
a harmonically trapped Fermi gas have been the subject of
intensive experimental [10–12] and theoretical (see Ref. [3]
and references therein) efforts. The temperature dependence
has been studied in Refs. [13–15]. Remarkably, at unitarity
all modes observed so far turned out to be insensitive to the
different nature of a superfluid and a classical gas, with their
frequencies remaining independent of temperature through-
out the hydrodynamic regime. Previous experiments have

demonstrated the crossover from hydrodynamic to collision-
less behavior, which typically occurs for temperatures
approaching the Fermi temperature, without giving any fur-
ther information on the regime of lower temperatures where
the gas is deeply hydrodynamic and the superfluid phase
transition occurs.
In this Letter, we report a joint effort of theory and

experiment on higher-nodal collective modes in the unitary
Fermi gas. We present a 1D hydrodynamic approach to
describe axial modes in a trapped ‘‘cigar-shaped’’ cloud.
Our experimental results confirm the predicted intrinsic
sensitivity of higher-nodal modes to the EOS in the
low-temperature regime, above and even well below the
superfluid phase transition.
The macroscopic dynamic behavior of a superfluid is

governed by the Landau two-fluid hydrodynamic equa-
tions [16] holding in the deep collisional regime !� � 1
where � is a typical collisional time and ! is the fre-
quency of the relevant sound mode in the trap. Landau’s
equations consist of the equation of continuity for the
total density, the equation for the velocity of the super-
fluid component, the equation for the entropy density,
and the equation for the current density. The physical
ingredients entering these equations are the equation of
state and the superfluid density. At zero temperature
they reduce to the irrotational hydrodynamic equations
of superfluids, above the critical point to the usual hydro-
dynamic equations of normal fluids. Below Tc these
equations describe the propagation of first and second
sound, the former being basically a density wave, with
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the normal and superfluid components moving in phase,
the latter being a temperature or entropy wave. For weakly
compressible fluids the coupling between first and second
sound is small [16]. This is the case of superfluid helium
and also of the unitary Fermi gas [17]. Since in the present
work we investigate the collective oscillations of density
(first sound), we simplify the search for the solutions of
Landau’s equation by requiring that the velocity fields of
the normal and superfluid components are equal. Under
this approximation the equations of motion involve
only the EOS, the superfluid density playing a role only in
the propagation of second sound.

In the presence of a trapping potential, the solution of
Landau’s equations is highly nontrivial, due to the inho-
mogeneity of the density profile, and thus far has been
calculated only for the simplest case of isotropic trapping
[17,18]. Since the experimental excitation and obser-
vation of these modes are more easily accessible with
very elongated traps, in the following we focus on such
configurations. In [19] it was shown that under suitable
conditions of radial trapping one can derive simplified
1D hydrodynamic equations starting from the more gen-
eral 3D Landau’s equations. The basic point for such a
derivation is the assumption that both the velocity field
vz along the long axis and the temperature fluctuations
during the propagation of sound do not depend on the
radial coordinates. This 1D-like hydrodynamic formula-
tion is justified under the condition that the viscosity and
the thermal conductivity are sufficiently large to ensure,
respectively, the absence of radial gradients in the veloc-
ity vz and the temperature. The condition for the viscosity
can be recast in the form � � �n1!, where �n1 is the
normal 1D mass density, obtained by radial integration
of the 3D normal density. An analogous condition holds
for the thermal conductivity. These conditions are better
satisfied in the presence of tight radial confinement and
for the lowest frequency oscillations. One can estimate
the values of shear viscosity � using the experimental
data of [20]. For the actual conditions of our experiments,
both sides of the inequality are of the same order of
magnitude and consequently the full applicability of the
1D hydrodynamic formulation can be justified only
a posteriori. Violation of the 1D condition would result
in a damping of the collective oscillations so that, to the
extent that the observed damping is small, we expect that
the assumption of velocity field and temperature being
independent of the radial coordinate is a reasonable
ansatz for our variational approach.

Under the above assumptions and focusing on the uni-
tary Fermi gas, the equation for the velocity field, charac-
terizing the density oscillations of the gas in a highly
elongated harmonic trap, takes the form (see Ref. [21]
for a complete and systematic derivation)

mð!2 �!2
zÞvz � 7

5
m!2

zz@zvz þ 7

5

P1

n1
@2zvz ¼ 0; (1)

where we have considered oscillations in time proportional
to e�i!t. Here, !z represents the trap frequency along the
axial direction z and m is the atom’s mass. Equation (1)
explicitly points out the crucial role played by the equation
of state P1ðn1; TÞ, where P1 ¼

R
Pdxdy is the ‘‘1D

pressure’’ (having units of force) and n1 ¼
R
ndxdy is

the atom number per unit length. In order to derive
Eq. (1) we have explicitly used the adiabatic result
n1ð@P1=@n1Þ�s1 ¼ 7=5P1 holding at unitarity at all tem-

peratures, where �s1 ¼ ð1=n1Þ
R
sdxdy is the entropy per

atom with s the entropy density and we have assumed the
validity of the local density approximation along both
the axial and radial directions.
At zero temperature and in the classical limit of high

temperature, the hydrodynamic equation (1) admits ana-
lytic solutions of polynomial form vz ¼ akz

k þ
ak�2z

k�2 þ � � � , with integer values of k. At T ¼ 0, where
P1ðn1Þ=n1¼ð2=7Þ½�0�ð1=2Þm!2

zz
2�, with �0 the chemi-

cal potential at the center of the trap, the frequency of the
kth mode is given by

!2 ¼ 1

5
ðkþ 1Þðkþ 5Þ!2

z : (2)

In the classical limit, where P1=n1 ¼ kBT, one finds the
different k dependence

!2 ¼ 1

5
ð7kþ 5Þ!2

z : (3)

It is worth noting that Eqs. (2) and (3) coincide for k ¼ 0
(center of mass oscillation) and k ¼ 1 (lowest axial breath-
ing mode), while they predict different values for the
higher nodal solutions. One can actually prove that not
only the frequency of the center of mass but, at unitarity,
also the frequency of the lowest axial breathing mode are
independent of temperature, corresponding to an exact
scaling solution of the two fluid hydrodynamic equations
[21]. It then follows that only the k � 2 modes exhibit a
temperature dependence.
In order to provide a simple quantitative prediction for

the temperature dependence of the mode frequencies, we
have developed a variational approach to the solution of the
hydrodynamic equation (1) with the ansatz vz ¼ a2z

2 þ
a0 for the k ¼ 2 mode. This ansatz reproduces exactly the
frequency of the k ¼ 2 mode in the limits of T ¼ 0 and
high T. For intermediate temperatures we obtain [21]

!2
k¼2 ¼

129t2 � 25

5ð9t2 � 5Þ !
2
z ; (4)

where t2 ¼ M0M4=M
2
2. We have introduced the dimen-

sionless moments

M‘ ¼
Z ��0

�1
dxð��0 � xÞð‘þ1Þ=2nðxÞ�3

T (5)

of the 3D number density nðxÞ, where x is the local
chemical potential times � ¼ 1=kBT and �T is the thermal
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de Broglie wavelength. The temperature dependence of the
moments M‘ can be evaluated using the experimentally
determined EOS [8]. Approaching the classical regime, for
�� & �1:5, the virial expansion of the EOS [22] holds [8]
and allows us to extend the integral to �� ! �1. At low
temperatures, corresponding to ��> 4, the EOS is gov-
erned by phonons and is solely determined by the Bertsch
paramter �. The error of the quantity t2 above resulting
from the error in the density EOS is less than 1%. We have
checked that our variational predictions are practically
indistinguishable from the exact numerical solution of
Eq. (1). Starting from the equation of continuity one can
also calculate the shape of the density oscillations of each
mode, proportional to @zðn1vzÞ.

Experimentally, we prepare an ultracold, resonantly
interacting Fermi gas by evaporating a two-component
spin mixture of fermionic 6Li in an optical dipole trap
[23]. The atomic cloud contains typically N=2 ¼
1:5� 105 atoms per spin state, and the magnetic field is
set to 834 G, right on top of the well-known broad
Feshbach resonance [24]. For the lowest temperatures,
the trapping beam (wavelength 1075 nm) has a waist of
31 �m, the trap depth is about 2 �K, and the axial and
radial trap frequencies are !z ¼ 2�� 22:52ð2Þ Hz and
!r ¼ 2�� 473ð2Þ Hz, respectively. For experiments at
higher temperatures, the beam waist is increased to
38 �m, and deeper traps are used (up to 16 �K depth)
with trap frequencies of up to !z ¼ 2�� 23:31ð3Þ Hz
and !r ¼ 2�� 1226ð6Þ Hz. The corresponding Fermi

temperatures TF ¼ @ð3N!2
r!zÞ1=3=kB vary between about

0.8 and 1:5 �K. We point out that essentially perfect
harmonic confinement along the long trap axis (z axis) is
ensured by the magnetic trapping that results from the
curvature of the magnetic field used for Feshbach tuning
[23]. Also, anharmonicities in the radial confinement
remain negligibly small. To probe the ultracold gas we
record one-dimensional axial density profiles n1ðzÞ by
near in situ absorption imaging [25].

The temperature T of the gas is set by controlled heating,
always starting from a deeply cooled cloud (T=TF � 0:1).
In the low-temperature range (T & 0:2TF), we simply
introduce a variable hold time of up to 4 s in which residual
trap heating slowly increases T. Higher temperatures are
reached by parametric heating, modulating the trap power
at about 2!r and introducing a sufficient hold time to reach
thermal equilibrium between the different degrees of
freedom. We characterize the resulting temperature in a
model-independent way that does not require any a priori
knowledge of the EOS. Based on the virial theorem [26] we
introduce the dimensionless parameter E=E0, which rep-
resents the total energy E ¼ 3m!2

z

R1
�1 dzz2n1ðzÞ normal-

ized to the energy of a noninteracting, zero-temperature
Fermi gas, E0 ¼ 3

4NkBTF. For a given EOS, the energy

scale (E=E0) can be converted to a temperature scale
(T=TF). Alternatively, we obtain the cloud’s temperature

by fitting the experimental profiles n1ðzÞ [7,27] with
T-dependent profiles for a given EOS. For both methods,
we use the EOS from Ref. [8]. We note that the tempera-
tures obtained by both methods in general show satisfying
agreement with each other. At very low temperatures the
latter method shows a trend to give slightly lower values of
T (up to 	10%), which indicates small systematic uncer-
tainties of our measurements.
We selectively excite axial modes of order k by using a

resonant excitation scheme. As illustrated in Fig. 1(a), a
repulsive 532-nm laser beam perpendicularly intersects the
trapping beam, with its position and size chosen in a way
to provide best mode matching. Typically, the excitation
pulse contains 8 cycles of sinusoidal modulation with a
half-cycle sine envelope, and the maximum potential
height of the excitation beam is kept to about 0:01kBTF.
The power, length, and shape of the excitation pulse are
optimized in order to resonantly drive the desired small-
amplitude oscillation. The amplitude of the corresponding
density modulation stays well below 3% of the central
density of the cloud.
We record axial density profiles n1ðz; tÞ of the excited

cloud for various time delays t after the excitation pulse.

FIG. 1 (color online). Probing a higher-order first sound
longitudinal mode at the example of k ¼ 2. In (a), we illustrate
the basic geometry of exciting the optically trapped cloud with
a weak, power-modulated repulsive laser beam, which perpen-
dicularly intersects the trapping beam. In (b), the experimental
mode profiles (data points) are compared to theoretical curves
based on the experimental EOS from Ref. [8] (solid lines) for
two different temperatures. The corresponding cloud profiles
in (c) are analyzed to extract the temperatures (see text).
The solid lines show the density profiles obtained from the

EOS [8] with T=TF ¼ 0:10 and 0.45. The parameter ZTF ¼
�1=4!�1

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTF=m

p
represents the Thomas-Fermi radius of the

zero-T interacting gas.
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We then perform a Fourier transform. The resulting func-
tion ~nðz;!Þ reveals the collective mode spectrum with
eigenfrequencies !k and the corresponding spatial mode
profiles ~nkðzÞ. We extract the precise frequency of a par-
ticular mode k by projecting n1ðz; tÞ onto the spatial profile
~nkðzÞ and analyzing the resulting oscillation in the time
domain [25]. The high signal-to-noise ratio results in very
low statistical uncertainties in the permille range.

In this way, we study the longitudinal modes with k ¼ 0,
1, 2. The measured frequency !0 of the sloshing mode
(k ¼ 0) is an accurate measure of the axial trap frequency
(!k¼0 ¼ !z), and is therefore used for normalization
purposes. The axial compression mode (k ¼ 1) has been
studied in previous work [11,28]. Here, in the full tem-
perature range explored (0:1 
 T=TF 
 0:5), we observe

its frequency very close to !k¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
12=5

p
!z. Deviations

from this value remain below 0.3% and no significant
temperature dependence is observed. This confirms that
this mode is insensitive to the temperature as long as the
gas stays hydrodynamic. For the higher-nodal mode with
k ¼ 2, we observe the expected T-dependent frequency
variations. Damping increases as compared to the k ¼ 1
mode, but remains sufficiently small to observe many
oscillations and thus to accurately determine the mode
frequency. Typical observed damping times [25] are 2 s
at 0:5Tc, 0.2 s at Tc, and 0.12 s at 2Tc. We note that the
k ¼ 3 mode [25] shows very similar behavior, with larger
frequency variations but faster damping.

In Figs. 1(b) and 1(c), we show examples for the spatial
profiles of the k ¼ 2 mode for two different temperatures
T=TF ¼ 0:10 and 0.45 along with the corresponding
unperturbed density profiles of the cloud. The comparison
of the experimental data (data points) with the theoretical
results based on the experimental EOS in Ref. [8] (solid
lines) shows excellent agreement.

Figure 2 presents the comparison between the experi-
mental and theoretical frequencies for the k ¼ 2 mode. In
Fig. 2(a) the normalized mode frequencies !k¼2=!z are
plotted versus the energy parameter E=E0, while Fig. 2(b)
displays the same data on a temperature scale T=TF. The
experimental data confirm the pronounced temperature
dependence of the mode frequencies as predicted by our
theory based on the EOS of Ref. [8] (solid line). In com-
parison, the disagreement with the dependence that would
result from the EOS of the ideal Fermi gas (dashed line)
highlights the important role of the EOS. At the lowest
temperatures (T=TF � 0:1) the frequency lies close to the
T ¼ 0 superfluid limit, but already shows a significant
down-shift amounting to almost 1%. At the highest tem-
peratures (T=TF � 0:45) our data show a clear trend to
go below the asymptotic high-temperature value, i.e., the
classical hydrodynamic limit. The corresponding nonmo-
notonic temperature dependence can be understood based
on the first-order correction to the EOS resulting from the
virial expansion at high temperatures.

In conclusion, our combined theoretical and experimental
work on higher-nodal axial collective modes of a unitary
Fermi gas reveals a pronounced temperature dependence
below and near the superfluid phase transition. The
observed temperature dependence is a unique feature of
higher-nodal modes, not present for any other collective
mode studied in Fermi gases so far. Our theoretical
approach is based on a 1D two-fluid hydrodynamic model
describing the frequently used elongated cigar-shaped trap
geometry. The excellent agreement with the experimental
results provides a stringent test for the validity of this 1D
approach and highlights its potential power to accurately
describe second sound modes. Moreover, our measure-
ments provide an independent confirmation of the recently
measured EOS of a unitary Fermi gas.
We would like to thank John Thomas for useful discus-

sions and Florian Schreck for discussion and experimental
support. The Innsbruck team acknowledges support from
the Austrian Science Fund (FWF) within SFB FoQuS

FIG. 2 (color online). Comparison between experimental and
theoretical first sound frequencies of the k ¼ 2 mode. In (a) the
experimental data are plotted versus the energy parameter E=E0,
while in (b) we use a temperature scale T=TF. The theoretical
curves (solid lines) are based on the EOS of Ref. [8]. This EOS is
also used to extract T=TF from the measured profile in two
different ways: The filled symbols in (b) result from a direct
conversion of E=E0 to T=TF, while the open symbols result from
fitting the cloud profiles (see text). For comparison, we also show
the mode frequencies (dashed curves) that would result from the
EOS of the ideal Fermi gas. The thin horizontal dashed lines

mark the zero-T superfluid limit (!=!z ¼
ffiffiffiffiffiffiffiffiffiffiffi
21=5

p
) and the

classical hydrodynamic limit (!=!z ¼
ffiffiffiffiffiffiffiffiffiffiffi
19=5

p
) according to

Eqs. (2) and (3), respectively. In (a) the dashed vertical line
indicates the T ¼ 0 ground state with E=E0 ¼

ffiffiffi
�

p ¼ 0:613ð3Þ,
while the dash-dotted vertical lines in (a) and (b) indicate the
critical energy Ec=E0 ¼ 0:934ð39Þ and temperature Tc=TF ¼
0:223ð15Þ.

PRL 110, 055303 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 FEBRUARY 2013

055303-4



(Project No. F4004-N16). The Trento team acknowledges
support from the European Research Council through the
project QGBE. The MIT work was supported by the NSF,
AFOSR, ONR, ARO with funding from the DARPA OLE
program, and the David and Lucile Packard Foundation.

[1] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Oxford University Press, 2003).

[2] M. Inguscio, W. Ketterle, and C. Salomon, Proceedings of
the International School of Physics ‘‘Enrico Fermi’’,
Course CLXIV (IOS Press, Amsterdam, 2008).

[3] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod.
Phys. 80, 1215 (2008).

[4] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,
885 (2008).

[5] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic,
and K. Levin, Science 307, 1296 (2005).

[6] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama,
Science 327, 442 (2010).

[7] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and
C. Salomon, Nature (London) 463, 1057 (2010).

[8] M. J. H. Ku, A. T. Sommer, L.W. Cheuk, and M.W.
Zwierlein, Science 335, 563 (2012).

[9] T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).
[10] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and

J. E. Thomas, Phys. Rev. Lett. 92, 150402 (2004).
[11] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin,

J. Hecker Denschlag, and R. Grimm, Phys. Rev. Lett. 92,
203201 (2004).

[12] A. Altmeyer, S. Riedl, C. Kohstall, M. J. Wright, R.
Geursen, M. Bartenstein, C. Chin, J. Hecker Denschlag,
and R. Grimm, Phys. Rev. Lett. 98, 040401 (2007).

[13] J. Kinast, A. Turlapov, and J. E. Thomas, Phys. Rev. Lett.
94, 170404 (2005).

[14] M. J. Wright, S. Riedl, A. Altmeyer, C. Kohstall, E. R.
Sánchez Guajardo, J. Hecker Denschlag, and R. Grimm,
Phys. Rev. Lett. 99, 150403 (2007).

[15] S. Riedl, E.R. Sánchez Guajardo, C. Kohstall, A. Altmeyer,
M. J. Wright, J. Hecker Denschlag, R. Grimm, G.M.
Bruun, and H. Smith, Phys. Rev. A 78, 053609 (2008).

[16] I.M. Khalatnikov, An Introduction to the Theory of
Superfluidity (Benjamin, New York, 1965).

[17] E. Taylor, H. Hu, X.-J. Liu, L. P. Pitaevskii, A. Griffin, and
S. Stringari, Phys. Rev. A 80, 053601 (2009).

[18] Y. He, Q. Chen, C.-C. Chien, and K. Levin, Phys. Rev. A
76, 051602 (2007).

[19] G. Bertaina, L. Pitaevskii, and S. Stringari, Phys. Rev.
Lett. 105, 150402 (2010).

[20] C. Cao, E. Elliott, H. Wu, and J. E. Thomas, New J. Phys.
13, 075007 (2011).

[21] Y.-H. Hou, L. Pitaevskii, and S. Stringari
arXiv:1301.4419.

[22] X.-J. Liu, H. Hu, and P.D. Drummond, Phys. Rev. Lett.
102, 160401 (2009).

[23] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl,
S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm,
Science 302, 2101 (2003).

[24] C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga, Rev.
Mod. Phys. 82, 1225 (2010).

[25] E. R. Sánchez Guajardo, M.K. Tey, L. A. Sidorenkov, and
R. Grimm (to be published).

[26] J. E. Thomas, J. Kinast, and A. Turlapov, Phys. Rev. Lett.
95, 120402 (2005).

[27] T.-L. Ho and Q. Zhou, Nat. Phys. 6, 131 (2010).
[28] S. Nascimbène, N. Navon, K. J. Jiang, L. Tarruell, M.

Teichmann, J. McKeever, F. Chevy, and C. Salomon,
Phys. Rev. Lett. 103, 170402 (2009).

PRL 110, 055303 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 FEBRUARY 2013

055303-5

http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1126/science.1109220
http://dx.doi.org/10.1126/science.1183012
http://dx.doi.org/10.1038/nature08814
http://dx.doi.org/10.1126/science.1214987
http://dx.doi.org/10.1103/PhysRevLett.92.090402
http://dx.doi.org/10.1103/PhysRevLett.92.150402
http://dx.doi.org/10.1103/PhysRevLett.92.203201
http://dx.doi.org/10.1103/PhysRevLett.92.203201
http://dx.doi.org/10.1103/PhysRevLett.98.040401
http://dx.doi.org/10.1103/PhysRevLett.94.170404
http://dx.doi.org/10.1103/PhysRevLett.94.170404
http://dx.doi.org/10.1103/PhysRevLett.99.150403
http://dx.doi.org/10.1103/PhysRevA.78.053609
http://dx.doi.org/10.1103/PhysRevA.80.053601
http://dx.doi.org/10.1103/PhysRevA.76.051602
http://dx.doi.org/10.1103/PhysRevA.76.051602
http://dx.doi.org/10.1103/PhysRevLett.105.150402
http://dx.doi.org/10.1103/PhysRevLett.105.150402
http://dx.doi.org/10.1088/1367-2630/13/7/075007
http://dx.doi.org/10.1088/1367-2630/13/7/075007
http://arXiv.org/abs/1301.4419
http://dx.doi.org/10.1103/PhysRevLett.102.160401
http://dx.doi.org/10.1103/PhysRevLett.102.160401
http://dx.doi.org/10.1126/science.1093280
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevLett.95.120402
http://dx.doi.org/10.1103/PhysRevLett.95.120402
http://dx.doi.org/10.1038/nphys1477
http://dx.doi.org/10.1103/PhysRevLett.103.170402

