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We suggest a method to simulate compact quantum electrodynamics using ultracold atoms in optical

lattices, which includes dynamical Dirac fermions in 2þ 1 dimensions. This allows us to test the

dynamical effects of confinement as well as the deformations and breaking of two-dimensional flux

loops, and to observe the Wilson-loop area law.
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Recent progress in the manipulation and control of
atomic systems has boosted the interest in the emerging
field of quantum simulation [1–3]. So far, most of the
theoretical and experimental effort has concentrated on
simulating condensed matter systems. The field of quan-
tum simulation, however, may also have a strong impact in
high energy physics (HEP) [4], lending us the possibility of
observing intriguing phenomena emerging from the stan-
dard model, or even allowing us to answer some questions
which cannot be addressed with standard techniques of
lattice quantum chromodynamics (QCD). In contrast to
its condensed matter physics counterpart, the field of quan-
tum simulation of HEP models is almost unexplored, and
presents new theoretical and experimental challenges.

In the standard model of HEP, forces are mediated
through gauge bosons, which are the excitations of gauge
fields. Thus, gauge fields, either Abelian or non-Abelian,
play a central role in particle physics. As such, gauge
theories have been a subject of continuous research over
the last decades, theoretically, numerically, and experimen-
tally. One important property of such theories is known as
confinement [5–8], which is manifested in real-world
QCD, in the structure of hadrons: free quarks cannot
be found in nature, due to the phenomenon of confine-
ment, which ‘‘holds them together,’’ forming hadrons.
Confinement is known to hold in non-Abelian gauge theo-
ries (not only in QCD), but it is also manifested in Abelian
theories, such as Uð1Þ–quantum electrodynamics (QED):
in the lattice case, compact QED (cQED). There, in (3þ 1)
dimensions, a phase transition takes place between a con-
fining phase (for strong couplings) and a Coulomb phase
(for weak ones), and in (2þ 1) dimensions confinement
takes place for all values of the coupling constant [7–11].

Recently, some suggestions for simulations of quantum
field theory (QFT) and HEP models have been proposed.
These include the simulations of dynamic scalar [12]
(vaccum entanglement) and fermionic fields [13] (the inter-
acting Thirring and Gross-Neveu models). Simulation pro-
posals for fermions in lattice QFT, either free or in external
nondynamical gauge fields, include axions and Wilson
fermions [14], Dirac fermions in curved spacetime [15],

and general quantum simulators of QFTs and topological
insulators [16]. On the other hand, some simulations were
proposed for dynamic gauge fields but with no fermions
using BECs [17] or single atoms [18] in optical lattices,
where the first simulates the Abelian Kogut-Susskind
Hamiltonian [10] and the latter, a truncated (‘‘spin-
gauge’’) version of it (other examples of truncated models
are given in Refs. [19–21]). More simulations of pure-
gauge Uð1Þ theories with ultracold atoms have been
recently suggested [22,23].
The next step is the inclusion of dynamical matter

(fermions) in the model, allowing for simulation of full
cQED. This is of special interest, both for the possibility
of probing confinement in a dynamic matter theory,
as well as for the exploration of problems which are
not amenable to a numerical description due to the well-
known Grassmanian integration sign problem [24]. The
first proposals for the simulation of a fermionic system
with a dynamic gauge field [13,25] are, so far, restricted to
(1þ 1) dimensions, where the emerging physical phe-
nomena are limited due to the absence of magnetic fields
and of multiple paths connecting two points. A quantum
simulation of QED in the continuum was suggested as well
[26]. Compactness, which is a lattice feature absent in
continuous theories, is essential for confinement [11].
In this Letter, we propose a spin-gauge model containing

dynamic fermions that allows for simulation of nontrivial
gauge field dynamics for (2þ 1)-dimensional cQED,
including two-dimensional spatial effects such as flux
loops. We show how to construct a gauge invariant model
of a Uð1Þ gauge field coupled to ‘naive’ fermions, discuss
how to create various initial states, and suggest several
possible experiments, such as the observation of broken
flux lines and manifestation of Wilson’s area law of con-
finement [5], realizing the gedanken experiment proposed
in Ref. [27].
The simulating system.—Consider a two-dimensional

spatial optical lattice [3], filled with fermionic and bosonic
atoms (see Fig. 1). Each vertex n ¼ ðn1; n2Þ can be occu-
pied by fermions, either of species C or D, described by
the local Hilbert spaces spanned by eigenstates of the
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fermionic number operators NC;D
n (with the annihilation

operators cn, dn). The two species form a spinor at each
vertex:

c n ¼ cn

dn

 !
: (1)

We define the local charge [28]

Qn ¼ c y
nc n � 1 ¼ NC

n þ ND
n � 1: (2)

Each link (in directions k ¼ 1, 2) is occupied by a single
boson, of one of 2lþ 1 species, belonging to an angular
momentum multiplet, described by eigenstates of Lk

z;n

(see also Fig. 1).
We call this system ‘‘the primitive theory’’ because the

gauge-invariant effective theory will arise from it by add-
ing a constraint, as will be shown later, but first we shall
describe the (separate) primitive theories for the bosons
and the fermions. Similar fermionic theories can be found,
for example, in Refs. [14–16].

The bosons primitive dynamics is governed by the
Hamiltonian

Hb
p ¼ X

n;k

ð�ðLk
z;nÞ2 þ 2�Lk

x;nÞ þ�
X
hi;ji

ðLx;iLx;j þ Ly;iLy;jÞ;

(3)

where the second sum is on nearest-neighbor (intersecting)
links.

The fermions primitive dynamics is governed by the
lattice ‘naive’ Dirac Hamiltonian

Hf
p ¼ i�

X
n;k

ðc y
n�kc nþk̂ � H:c:Þ þM

X
n

c y
n�zc n: (4)

Imposing gauge invariance.—We wish to impose gauge
invariance on the system. In order to do so, we constrain
the generators of gauge symmetry Gn to zero by adding
the ‘‘Gauss’s Hamiltonian’’ HG to the two primitive
Hamiltonians. This Hamiltonian involves an interaction
between the two primitive systems. The generators of local
gauge transformations are

Gn ¼ L1
z;n þ L2

z;n þ L1
z;n�1̂

þ L2
z;n�2̂

� ð�1Þn1þn2Qn: (5)

The constraint is implemented by the Gauss’s Hamiltonian,
HG ¼ �

P
nG

2
n, and thus � must be the highest energy

scale: � � �, �, �, �, M.
As � is the largest energy scale, we wish to derive an

effective theory for H0
Gs ground sector [29], which

will introduce gauge invariance to the system. In the first
order, we obtain the bosonic ‘‘electric Hamiltonian’’
HE¼�

P
n;kðLk

z;nÞ2, and the fermionic ‘‘mass

Hamiltonian’’ HM ¼ M
P

nc
y
n�zc n.

In the second order, we obtain four contributions:

(1) the bosonic ‘‘magnetic’’ plaquette term HB¼
�2�2

�

P
nðL1þ;nL

2
�;nþ1̂

L1
þ;nþ2̂

L2�;nþH:c:Þ as well as the

bosonicH0
B, which has no equivalent in cQED, but is gauge

invariant and contributes no interesting dynamics (see
Ref. [18] for details), and (2) the ‘‘minimal coupling’’

Dirac terms HD ¼ � i��
�

P
n;kðc y

n�kc nþk̂L
k
s;n � H:c:Þ

(where s ¼ ð�Þn1þn2). The other two contributions are
less important, and are described in Sec. 2 of the
Supplemental Material [30].
Next we make the sign change Lk

z;n ! ð�1ÞnLk
z;n.

Besides inverting the sign of Lz on odd links, we also
swap the L� operators there (leaving Lx invariant). This
results, as in the pure spin-gauge theory, with correct signs
in the plaquette term

HB ¼ � 2�2

�

X
n

ðL1þ;nL
2
þ;nþ1̂

L1
�;nþ2̂

L2�;n þ H:c:Þ; (6)

and the gauge generators

Gn ¼ ð�1Þn1þn2ðL1
z;n þ L2

z;n � L1
z;n�1̂

� L2
z;n�2̂

�QnÞ:
(7)

This also gives rise to the correct (minimally coupled)
Dirac Hamiltonian

HD ¼ i��

�

X
n;k

ðc y
nþk̂

�kc nL
k�;n � H:c:Þ; (8)

where we identify the Dirac matrices �1;2 as the Pauli

matrices �1;2 (the Dirac � matrix is �z).

Finally, we introduce the gauge theory parameters g
(coupling constant) and m (fermion mass) by rescaling

the energy by � ¼ 2
g2
� ¼ 4l2ðlþ1Þ2�2g2

� ¼ 2��
ffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
� ¼ M

m ,

and obtain

Hl;cQED ¼ ��1ðHE þHB þHD þHMÞ: (9)

This is the spin-gauge Hamiltonian of cQED with naive
dynamic fermions.
We wish to emphasize that the previous effective

Hamiltonian calculation does not depend on l; thus, if the
primitive theory and the constraint are achieved for other
values of l, the same effective Hamiltonian results.

FIG. 1 (color online). The simulating lattice. Every link is
occupied by a single boson [yellow (light) circles] and every
vertex by either zero, one, or two fermions [blue (dark) circles].
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Realization of the model.—In order to realize the
required bosonic terms, one can use the methods presented
in Ref. [18], which generalize those in Ref. [31]. For
further details on that and on the fermionic interaction,
see Sec. 1 of the Supplemental Material [30]. The main
issue is now the realization of the boson-fermion interac-
tion terms inHG. The required terms, for each vertex n, are
of the form

��ðnÞðL1
z;n þ L2

z;n þ L1
z;n�1̂

þ L2
z;n�2̂

ÞðNC
n þ ND

n Þ; (10)

where �ðnÞ ¼ �2ð�1Þn1þn2 . For a start, we choose the
atomic hyperfine levels of the fermionic degrees of free-
dom: the C and D fermions belong to the hyperfine levels
jFC ¼ 1

2 ; mCi, jFD ¼ 3
2 ; mDi respectively, where mC, mD

are constant on each vertex. The hyperfine levels are
arranged such that the other values ofm, on each hyperfine
manifold, are of a much larger energy, and thus are not
accessible if they are not initially populated.

The terms in Eq. (10) are derived as scattering interac-
tions between two particles: bosons with Fb ¼ 1 and each
of the fermionic species. The first quantized interaction
Hamiltonian corresponding to such scattering processes
is Hsc ¼

P
FgFPF, where the summation is on the total

angular momentum of the two scattered particles, fgFg
depend on the S-wave scattering length, and thus are
tunable using optical Feshbach resonances [32–34], and
PF are projection operators to the subspaces of different
total angular momenta. These operators can be built using
the different values of FC � Fb, FD � Fb for each value of
total F, and thus one can express the scattering
Hamiltonians for C, D as

HC
sc ¼ ~C0 þ ~C1FC � Fb;

HD
sc ¼ ~D0 þ ~D1FD � Fb þ ~D2ðFD � FbÞ2;

(11)

where ~Ci ¼ ~Ciðg1
2
; g3

2
Þ, ~Di ¼ ~Diðg1

2
; g3

2
; g5

2
Þ.

These Hamiltonians are next plugged into the second

quantized interaction terms
R
d3x�Cy

i �y
j H

C
sc�

C
k�l, where

�C
k , �l are the fermionic and bosonic second quantized

wave functions (and similarly for D). Because of the
energy spectrum of the fermions, the only possible
processes are such with i ¼ k ¼ mC. Thus no angular
momentum transfer can take place for the bosons as
well; hence, j ¼ l ¼ mb, and only the z components of
the angular momentum vectors contribute. We finally
obtain, on each vertex,X
mb

ðC0 þ C1mCmbÞcyncnaymb
amb

þX
mb

½D0 þD1mDmb þD2fðmD;mbÞ�dyndnaymb
amb

;

(12)

where the bosonic operators correspond to each of the
neighboring links, Ci, Di are products of the coefficients

~Ci, ~Di and the appropriate overlap integrals, and fðmD;mbÞ
is quadratic.
In order to obtain Eq. (10), we impose conditions on

the scattering coefficients gF (controlled by Feshbach
resonances) D2ðg1

2
; g3

2
; g5

2
Þ ¼ 0, D0ðg1

2
; g3

2
; g5

2
Þ ¼ C0ðg1

2
; g3

2
Þ,

and D1ðg1
2
; g3

2
; g5

2
ÞjmDj ¼ C1ðg1

2
; g3

2
ÞjmCj ¼ �2�. The first

condition eliminates the quadratic terms. The second
condition results in terms of the form C0ðNC

n þ ND
n ÞNb.

However, the bosonic effective Hamiltonian sets Nb ¼ 1
everywhere around the bosonic lattice, and thus this term
is merely the total number of fermions in the system, which
is an ignorable constant in the Hamiltonian. Setting at
the vertex n, mC ¼ ð�1Þn1þn2 jmCj, mD ¼ ð�1Þn1þn2 jmDj,
we are only left with one type of term, which is, because of
the third condition, �2�ð�1Þn1þn2ðNC

n þ ND
n ÞLz. This is

the desired interaction.
No interactions vacuum and excited states.—Suppose

first that the bosonic and fermionic interactions (HB, HD)
are turned off, i.e., the system is pure gauge (the charges
are static and uncoupled) and in the strong coupling limit.
Hence the gauge field vacuum does not contain any excited
links: all the bosonic atoms are in theirm ¼ 0 state. This is
the exact cQED vacuum in the extreme strong limit,
because no plaquette terms contribute.
Each vertex can contain four different fermionic

contents. The state with no charges corresponds to the
‘‘Dirac sea,’’ i.e., all the vertices are filled with D atoms.
In such a state, the local ‘‘mass’’ is �M. Because energies
are measured above the Dirac sea, we would like to mea-
sure these ‘‘masses’’ above �M, i.e., shift the energies
with the product of M with the total number of vertices.
This is the vacuum in the case of no charges. The three
local fermionic excited states correspond to different
simulated fermionic contents, as summarized in Table I
(note that the masses are relative to �M).
Initial state preparation.—The system is initially pre-

pared in the gauge+fermions ground state, which is an
eigenstate of HG þHE þHM,

jvaci � O
links

jm ¼ 0i
0
@ O

vertices

j0iCj1iD
1
A: (13)

Then, these three Hamiltonians can be turned on, without
changing the state but imposing the constraint.
There are several interesting initial states one can obtain,

even before turning on the field-matter interaction HD.
These include (a) the QED static vacuum (up to first order,

TABLE I. Fermionic contents of the vertices.

Real content ‘‘Mass’’ ‘‘Charge’’ Simulated content

j0iCj1iD 0 0 Empty vertex

j0iCj0iD M �1 �q

j1iCj1iD M þ1 q

j1iCj0iD 2M 0 q �q
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if one works with l ¼ 1) obtained by increasing � adia-

batically, keeping 2�2l2ðlþ1Þ2
� � �, (b) a ‘‘loop sea’’

obtained by increasing � adiabatically again, but with
2�2l2ðlþ1Þ2

� � �, dressing to a state with many loops, but

with larger amplitudes, and then, lowering the value of
� to obtain strong regime QED dynamics again, and
(c) zeroth-order excitations created using single-addressing
lasers [35,36]: large closed flux loops as in the pure gauge
case [see Fig. 2(a)] and/ormesons, i.e.,C charges and empty
vertices with zeroth-order flux tubes connecting them.
Afterwards HB can be turned on adiabatically to obtain
QED dynamics.

Inclusion of matter dynamics.—Given any of the initial
states (a), (b), or (c), the field-matter interaction HD can
be turned on (in order to remain in the strong limit,

the parameters must obey 2�2l2ðlþ1Þ2
� � ��

ffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
� � �

(see Sec. 3 of the Supplemental Material [30]). Then, an
interplay between the fermion masses and the fermionic
interaction terms introduces changes in the flux loops or
tubes structure, if one waits long enough. For example,
suppose 2M ¼ �L, for some integer L. Then, if there is a
flux tube or loop longer than L, we expect it to break with
some probability to two flux tubes, generating two new
fermions, and transferring the energy of the ‘‘disappearing
links’’ to the masses of the new fermions. On the other
hand, if the fermion mass is small (or zero) we expect the
flux tube to break and form new fermions constantly.

Another possibility is to slowly move (externally) one of
the charges of an initially prepared flux-tube and stretch it,
which should lead to it breaking apart.

Examples of matter dynamic processes are shown in
Fig. 2.

Wilson’s area law observation.—Another possible mea-
surement which can be done in this system is a test of the

Wilson-loop area law (dependence on an area of a space-
time rectangle) [5] as a probe for confinement. This can
be done by an interference of two mesons in superposition.
In real-world QED, however, it is only a gedanken experi-
ment [27]; here we propose to realize it in the quantum
simulation. For that, we need the fermions to be static and
their mass is unnecessary, and henceHM,Hf are turned off

(and thus, effectively, HD as well). In fact, for a proof of
principle of this experiment, HB is also not needed.
We start, in the extreme strong limit, with amesonic state:

a single flux-tube with length R over the Dirac sea jRi,
emanating between the vertices (m, n) and (mþ R, n),
such that Qm;n ¼ 1, QmþR;n ¼ �1. As a meson in the

strong coupling limit, it is an eigenstate of the
Hamiltonian. Then, as in Ref. [27], we wish to create a
superposition of two states, jRi and jRþ 1i: i.e., transfer
the C fermion, with a probability of 1

2 , from (m, n) to

(m� 1, n). We shall treat this subspace as a two-level
system, denoted by j #i ¼ jRi, j "i ¼ jRþ 1i, with the
Hamiltonian H0 ¼ �j "ih" j.
The required superposition is generated as in Ramsey

interferometry (see Sec. 5 of the Supplemental Material
[30]): we apply on the initial state j #i the unitary operation
U ¼ e�ið�=4Þ�y , and obtain the state Uj #i ¼ �j #xi. Next,
we wait a long time T � 	, during which the state evolves
to 1ffiffi

2
p e�i�RTðj #i � e�i�Tj "iÞ. Operating on the state with

U again yields 1ffiffi
2

p ðj #xi þ e�i�Tj "xiÞ (neglecting the global
phase). Switching back to the �z basis, recalling the
definitions of our effective two-level system, we obtain
that the probabilities of finding a fermion C in the vertices
(m, n), (m� 1, n) are

Pm;n ¼ sin2
�
�LT

2

�
; Pm�1;n ¼ cos2

�
�LT

2

�
: (14)

Because A ¼ LT (here L ¼ 1), this manifests the area law
in a confining phase (see Fig. 3); thus, within this system a
realization of the proposed gedanken experiment is pos-
sible. In future generalizations, this method may serve as a
phase transition probe.
Summary.—In this Letter, we have proposed a method

to add dynamic fermions to the spin-gauge model
introduced in Ref. [18]. This allows us to simulate

FIG. 2 (color online). Examples of gauge field and matter
dynamics, as explained in the text, for an initial state of a single
flux loop (a). Panels (b)–(f) show possible outcomes of first-
order processes. Panels (b)–(d) result from operations of HB:
(b) loop decreasing, (c) loop increasing, (d) exciting a non-
connected plaquette. Panels (e)–(f) result from operations of
HD: (e) loop breaking and creation of two charges, (f) creation
of a meson outside the loop.

FIG. 3 (color online). Description of the area-law experiment
in space-time, as described in the text. The interference phase
depends on the green (darker) area.
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(2þ 1)-dimensional cQED using ultracold atoms in opti-
cal lattices, enabling the observation of confinement in a
dynamic matter theory, and suggests a detour to the well
known Grassmanian integration sign problem, encountered
in Monte Carlo simulations [24]. Simulations of our model
on a small lattice may be used to check the effects of
imperfections of the parameters on the dynamics. We
have suggested several possible measurements, which
can show the emergence of dynamic charges, the breaking
of flux-tubes, and the area law behavior of the confining
potential.
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