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The shear in the mean field velocity Doppler shift is shown to suppress the amplitude of electric

potential fluctuations by inducing a shift in the peak of the radial wave number spectrum. An analytic

model of the process shows that the fluctuation spectrum shifts in the direction where the velocity shear is

linearly destabilizing but that nonlinear mixing causes a recentering of the spectrum about a shifted radial

wave number at reduced amplitude A model for the 2D nonlinear spectrum is used in a quasilinear

calculation of the transport that is shown to accurately reproduce the suppression of energy and particle

transport and the Reynolds stress due to the velocity shear.
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The suppression of turbulence, in strongly magnetized
plasmas, by shear in the mean field E� B drift velocity,
due to the electric field normal to magnetic flux surfaces,
was first proposed [1,2] as an explanation of the high
confinement regime (H mode) observed in tokamaks [3].
The theoretical model for suppression was a temporal
decorrelation of a passive scalar by advection in a field
of turbulence. This paradigm was tested with nonlinear
gyrofluid turbulence simulations [4]. It was found that
shear in the Doppler shift due to the E� B velocity did
suppress turbulence but that the strength of the suppression
was an order of magnitude stronger than the decorrelation
formulas [1,2] predicted. Only shear in the E� B Doppler
shift or ‘‘Doppler shear’’ is stabilizing. A sheared velocity
parallel to the magnetic field drives a Kelvin-Helmholtz
type instability. It was found [4] that the ion energy
flux driven by the turbulence could be modeled by a
‘‘quench rule’’ formula. In the quench rule paradigm
the intensity of the turbulence is reduced by an overall
factor of Max½ð1� �Ej�E�B=�maxjÞ; 0� where �E�B ¼
r=qdðc@��1=@c Þ=dr is the Waltz-Miller shear rate [4]
of the equilibrium electric potential (��1), �E is a positive
constant and �max is the maximum linear growth rate
without Doppler shear in the simulation. This formula
was shown to be robust over a range of plasma parameters.
This is suggestive of an essentially linear process, even
though it is a model of the nonlinear simulation results.
In sheared slab geometry, a shear in the E� B velocity
Doppler shift is linearly stabilizing [5] to gyrokinetic
eigenmodes. However, in the axisymmetric toroidal ge-
ometry of a tokamak, the linear ballooning modes become
Floquet modes, propagating along the magnetic field, when
there is Doppler shear. There is no clear correspondence
between the linear stability of these Floquet modes and the
suppression of the turbulence [4]. The quench rule has been
a successful paradigm for interpreting gyrokinetic linear
stability trends in experiments [6] and for predictive quasi-
linear transport modeling [7].

The first indication that the quench rule was incomplete
was the inability of the quasilinear models to compute the
toroidal Reynolds stress driven by Doppler shear in the
gyrokinetic turbulence simulations [8]. A finite Reynolds
stress requires a breaking of the ‘‘poloidal parity’’ of the
gyrokinetic equations, defined as a simultaneous reflection
in poloidal angle and parallel velocity. The quench rule
does not break the poloidal parity. It was first conjectured
that the way in which a Reynolds stress is produced by the
Doppler shear was by causing a finite spectral average
radial wave number [8]. A finite radial wave number kx
was shown to break the poloidal parity of individual gyro-
kinetic ballooning eigenmodes and yield a finite quasilinear
Reynolds stress. If the spectrum of the turbulence is sym-
metric with respect to the sign of the radial wave number,
then the spectral average radial wave number is zero and
there is no net Reynolds stress. A finite radial wave number
is linearly stabilizing but this was not, by itself, enough to
account for the reduction in energy transport [8]. These
successesmotivated a closer examination of the radial wave
number spectrum of the turbulence that has lead to the new
paradigm for how the Doppler shear suppresses transport
reported in this Letter. Details of the verification of the new
model over a range of plasma parameters, and with parallel
flows, will be given in a separate paper.
The time averaged, magnetic flux-surface averaged,

Fourier amplitude of the electric potential fluctuations in
gyrokinetic units at a fixed poloidal ky ¼ k��s and radial

kx ¼ kr�s wave number is denoted by

�ky;kx ¼ hje ~�ky;kx=Tej2i1=2a=�s; (1)

where a ¼ minor radius of plasma boundary, �s ¼ cs=�s,

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
, �s ¼ eBunit=cmi, Te ¼ electron tempera-

ture, mi ¼ ion mass, Bunit ¼ q=rdc =dr, r ¼ minor radius
of poloidal magnetic flux surface c , and q ¼ safety factor.
All growth rates and shear rates will be in units of cs=a.
The radial wave number spectrum of the electric potential
amplitude is shown in Fig. 1 (black) for nonlinear
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gyrokinetic turbulence simulations of the GA standard case
parameters [8] with finite aspect ratio toroidal geometry
and three values of the Doppler shear. The GYRO code [9]
was used for the simulations in this Letter and all cases
neglect magnetic fluctuations, keeping only the electric
potential fluctuations. The shift of the peak of the spectrum
to negative kx and the reduction in peak amplitude, are
clearly seen in Fig. 1. Note that kx is related to the con-
ventional ballooning angle constant [4] �0 by kx ¼ kyŝ�0
where ŝ ¼ rdq=qdr is the magnetic shear and does not
include the ballooning eikonal contribution to the radial
wave number. A finite kx corresponds to a tilted ballooning
mode and indeed a poloidal tilt of the 2D correlation
function contours is evident in the GYRO simulations with
Doppler shear [8]. The model that will be presented in this
Letter is also shown (gray) for these cases in Fig. 1.

In order to resolve the spectral shift, these simulations
require a larger range of both poloidal and radial wave
numbers than is typically needed to compute energy trans-
port. The cases in this Letter have 32 toroidal modes up to
ky ¼ 1:55 and 340 radial grid points, which can accurately

resolve up to about kmax ¼ 4:2 (half of the maximum grid
kx) for Doppler shear � 0:4 and 16 toroidal modes up to
ky ¼ 1:5 with 510 radial grid points (kmax ¼ 12:6)

for larger Doppler shear. The spectral average shift is
defined by

hkxi ¼
Z 1

�1
dkx�

2
ky;kx

kx= ��
2
ky
;

where ��2
ky
¼

Z 1

�1
dkx�

2
ky;kx

:

(2)

In Fig. 2 the spectral average shift as a function of the
Waltz-Miller shear rate is shown for ky ¼ 0:3 and three

different flux surface elongations (� ¼ 1:0, 1.5, 2.0) The
GA standard case has circular flux surfaces (� ¼ 1:0).
From Fig. 2, it is clear that the kx shift has a nonlinear

dependence on the Doppler shear rate that becomes
stronger with increasing elongation. The kx shift increases
with ky.

For the zonal flows (i.e., ky ¼ 0) the kx spectrum is

symmetric with respect to the sign of kx and hkxi is zero
even for finite mean field Doppler shear. This is required by
the reality condition on the Fourier amplitudes of the

electric potential fluctuation ð ~��
ky;kx

¼ ~��ky;�kxÞ. Hence,
nonlinear mode coupling to the zonal flows does not
contribute to the spectral shift of the finite ky fluctuations.

In these GYRO simulations, as with previous cases with
kinetic electrons [10], the turbulence is not shut off
(quenched) as was seen in adiabatic electron simulations
[4], even for very large Doppler shear (�E�B ¼ 0:8).
Over the resolved kx range, the spectral shape without

Doppler shear is very well fit by the Lorentzian function

�model ¼
�eff
ky

ðcyk2y þ cxk
2
xÞ
;

where �eff
ky

¼ cyk
2
y�ky;kx jkx¼0:

(3)

The coefficient cy is arbitrary, �eff
ky

is an effective non-

linear growth rate, and cx ¼ 0:56cy is chosen to make the

integrated intensity match ( ��2
ky
¼ ��2

model) at ky ¼ 0:3. For

ky > 0:05 this model [Eq. (3)] fits the shape of the GYRO

spectrum with an average standard deviation of 12% with
the same value of cx=cy.

The shift in the kx-spectrum induced by the Doppler
shear can be qualitatively modeled with an analytic non-
linear Bernoulli differential equation.

d�model

dt
¼ �eff

ky
�model þ �E�Bky

@�model

@kx

� ðcyk2y þ cxk
2
xÞ�2

model ¼ 0: (4)
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FIG. 1. Radial wave number spectrum of the time and flux
surface averaged electric potential fluctuation Fourier amplitude
�ky;kx (black) for the GA standard case [8] with ky ¼ 0:3 and

three values of the Doppler shear. Also shown are the spectral
shift model spectra (gray) [Eq. (7)].
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FIG. 2. The spectral average radial wave number shift [Eq. (2)]
hkxi at ky ¼ 0:3 as a function of the Doppler shear �E�B

computed from GYRO simulations for three values of the flux
surface elongation (� ¼ 1:0, 1.5, 2.0).
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This is an interpretive model of the nonlinear saturation
of the amplitude of the electric potential fluctuations. The
first two terms are the linear growth �eff

ky
and the Fourier

transform of the radial variation of the E� B velocity
Doppler shift about a flux surface rs: iky�E�Bðr� rsÞ=
�s ! ky�E�B@=@kx that can be derived directly from the

linear gyrokinetic equation. The third quadratic nonlinear
term represents the effect of the fluctuating E� B non-
linear mode coupling. The actual nonlinear mode coupling
term in the gyrokinetic equation [11] is a convolution over
the 2D wave number space (kx, ky). The model nonlinear

term in Eq. (4) is local in (kx, ky) but it has the same wave

number and field powers as the physical nonlinearity and it
gives the correct GYRO spectrum [Eq. (3)] for zero Doppler
shear. Without the nonlinear term, and identifying
�eff
ky

! @
@t , Eq. (4) has traveling wave solutions �model ¼

�modelðkx � ky�E�BtÞ related to the Floquet modes [4].

The nonlinear term localizes the traveling waves to a
standing wave form �model ¼ �modelðkx þ ky�E�B=�

eff
ky
Þ.

The model equation Eq. (4) can be solved analytically.
Substituting �model ¼ Exp½�ðkx�eff

ky
Þ=ðky�E�BÞ�=K into

Eq. (4) gives a linear equation for the function KðkxÞ.

ky�E�B

@K

@kx
¼ �Exp

�
�

kx�
eff
ky

ky�E�B

�
ðcyk2y þ cxk

2
xÞ (5)

Integrating Eq. (5) shows how the tilt, from the odd in kx
exponential factor due to the E� B shear, becomes aver-
aged, by the symmetric shape of the spectrum, into a new
spectrum symmetric about a shifted peak. Choosing the
integration constant so that the solution reduces to Eq. (3)
for �E�B ! 0 gives

�model ¼ �eff
ky
=½cyk2y þ cxhkxi2model þ cxðkx � hkximodelÞ2�;

(6)

where hkximodel ¼ �ky�E�B=�
eff
ky
. The notation anticipates

the result that hkximodel is the spectral average shift [Eq. (2)]
evaluated using the model amplitude [Eq. (6)]. The model
solution [Eq. (6)] captures the primary qualitative features
of the GYRO spectrum [Fig. 1] that the peak shifts and
the amplitude is reduced. The direction of the shift is
governed by the sign of the Doppler shear. The unshifted
spectrum [Eq. (3)] substituted into Eq. (4) yields a
Doppler shear term that is linearly destabilizing for
ky�E�B@�model=@kx > 0. The interaction with the nonlin-

ear term recenters the spectrum about a new peak in the
destabilized direction. The numerator of the solution (�eff

ky
)

is unchanged by the shift. The Lorentzian shape of
the model spectrum about the peak is also unchanged by
the shift but the peak amplitude is reduced by the factor
ð1þ cxhkxi2model=cyk

2
yÞ�1. The suppression of the turbu-

lence is due to the nonlinear recentering response to the

Doppler shear induced linear destabilization that preserves
the Lorentzian shape about the peak.
The model solution Eq. (6) does not match the GYRO

spectrum in two important details. The linear relation
between the spectral average shift and the Doppler shear
has the right sign, but it cannot fit the GYRO results in Fig. 2.
So the actual shift is used in the final model. The shifted
peak amplitude in the GYRO spectrum [Fig. 1] is below the
curve of the unshifted spectrum, whereas the model spec-
trum peak is on the unshifted curve. This defect of the
model equation solutions is true even if the linear growth
rate as a function of kx is used in the nonlinear Bernoulli
equation [Eq. (4)] instead of �eff

ky
. Clearly, the decay of the

linear growth rate with kx=ky plays some role in determin-

ing the shape of the GYRO spectrum, but the simplified
nonlinearity in the model equation does not reproduce that
physics. In order to fit the reduction of the peak of the GYRO

spectrum, a reduction factor that depends only on the
spectral average shift is applied to the model spectrum
[Eq. (6)].

�ss ¼
�eff
ky
=½1þ ð�xhkxi=kyÞ4�

½cyk2y þ cxhkxi2 þ cxðkx � hkxiÞ2�
: (7)

This is the final model that was used to fit to the GYRO

spectra in Fig. 1. It has the feature that it depends only on
the spectral shift hkxi computed from the GYRO spectra and
not directly on the Doppler shear. Hence, it will be called
the ‘‘spectral shift’’ model. The fit of the spectral shift
model [Eq. (7)] to the GYRO spectrum is illustrated in
Fig. 1 by the gray lines. The fitting coefficient in the
amplitude reduction factor in Eq. (7) was determined to

be �x ¼ 1:15. In Fig. 3, the integrated intensity ��2
ss for the

spectral shift model [Eq. (7)] is compared to the GYRO

results as a function of the Doppler shear for three different
flux surface elongations. Using the GYRO simulation values
of the spectral shift in the model [Eq. (7)] produces a good
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FIG. 3. Integrated intensity ��2
ky

[Eq. (2)] at ky ¼ 0:3 as a
function of Doppler shear �E�B for three values of the flux
surface elongation (� ¼ 1:0, 1.5, 2.0) comparing the GYRO

results (black) with the spectral shift model (gray) [Eq. (7)].
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fit to the intensity, for all three elongations, for the same
values of the fit parameters (cx=cy, �x). This demonstrates

that the suppression of the turbulence has a simpler rela-
tionship to the spectral shift than it does to the Doppler
shear. The verification of the spectral shift model [Eq. (7)]
for a large number of GYRO parameter scans will be pre-
sented in a future paper. The two fitting coefficients
ðcx=cy; �xÞ ¼ ð0:56; 1:15Þ in Eq. (7) have been found to

depend only weakly on plasma parameters (safety factor,
magnetic shear, trapped fraction, elongation, Ti=Te). The
spectral width is increased by the shift hk2xi ¼ ðcyk2y=cxÞ�
ð1þ 2cxhkxi2=ðcyk2yÞÞ. This is similar to the formula

for the change in the inverse radial correlation length
squared from the decorrelation model [12] that is quadratic
in the E� B velocity shear. However, the decorrelation
rate reduction that results from the peak amplitude reduc-
tion of Eq. (7) is much stronger than the decorrelation
formulas [1,2].

A direct consequence of the shift in the kx-spectrum is
the breaking of poloidal parity, which results in a finite
Reynolds stress [8]. In order to illustrate this, the transport
will be computed quasilinearly, using the spectral shift
model [Eq. (7)] for the electric potential and a linear
eigenmode calculation of the quasilinear weights. The
Trapped Gyro-Landau Fluid (TGLF) equations [13] are a
reduced 15-moment fluid model for the linear gyrokinetic
equation. They have been verified to be an accurate model
for computing the linear eigenmodes. The values of the
unshifted peak of the electric potential spectrum, and the
spectral shift hkxi from the GYRO simulation, are used in
the spectral shift model [Eq. (7)]. The TGLF model is used
to compute the linear eigenmodes of the most unstable
drift-ballooning mode at the (ky, kx) values of the shifted

peak. The quasilinear formulas for the electron particle
flux, the electron energy flux, the ion energy flux and the
toroidal ion Reynolds stress are, respectively,

�e ¼ c0
X
ky

�ky�
2
ssf~vE�B~ne= ~�

2gjky;hkxi;

Qe ¼ c0
3

2

X
ky

�ky�
2
ssf~vE�B ~pe= ~�

2gjky;hkxi;

Qi ¼ c0
3

2

X
ky

�ky�
2
ssf~vE�B ~pi= ~�

2gjky;hkxi;

�i;tor ¼ c0R0

X
ky

�ky�
2
ssf~vE�B~vi;tor= ~�

2gjky;hkxi:

(8)

The curly brackets contain the quasilinear weights
evaluated using the TGLF linear eigenfunction moments.
All of these are in gyrokinetic units [13]. The results for the
GA standard case are shown in Fig. 4. The overall factor c0
was chosen to fit the ion energy flux [Fig. 4(b)] at zero
Doppler shear. The quasilinear weights determine the ratios
of the fluxes quite well. The reduction of all of the fluxes
with the Waltz-Miller shear is fit very well by the

quasilinear model. The Reynolds stress [Fig. 4(a)] is due
to the parity breaking of the linear eigenmodes by the finite
kx. The good agreement between the quasilinear model and
the nonlinear GYRO results shows that the ballooning eigen-
mode at the peak of the shifted spectrum is the most
important linear mode in the nonlinear spectrum.
Neither the quench rule nor the decorrelation model can

produce a Reynolds stress from the Doppler shear since
they only reduce the intensity. It is remarkable that fitting
the properties of the kx spectrum for the electric potential,
from the nonlinear GYRO simulations, results in such an
accurate quasilinear model of the suppression of transport
and the generation of a Reynolds stress by Doppler shear.
In this Letter, a new paradigm for the way in which

E� B velocity shear suppresses gyro-kinetic turbulence
has been presented. The shear in the E� B velocity
Doppler shift produces a shift in the peak, and a reduction
in amplitude, of the radial wave number spectrum of
electric potential fluctuations. These features are qualita-
tively reproduced by an analytic model of the nonlinear
saturation. The model shows that the spectrum shift is
caused by the Doppler shear being linearly destabilizing
on one side and stabilizing in the opposite side of the peak.
The nonlinear mixing recenters and resymmetrizes the
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and the spectral shift quasilinear model [Eq. (8)] (gray) as a
function of Doppler shear rate for the GA standard case [8].
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spectrum about a peak in the destabilizing direction, which
reduces the amplitude of the peak. The net suppression
depends only on the spectral shift hkxi. This is a very
different paradigm than the decorrelation [1,2] and quench
rule [4] paradigms. The new spectral shift paradigm also
captures the finite-kx tilted ballooning eigenmode parity
breaking that generates a finite Reynolds stress from the
Doppler shear. The Reynolds stress due to the Doppler
shear is a momentum pinch that can contribute to a finite
toroidal rotation even when there is no external torque [8].
The spectral shift paradigm provides a framework to
understand how more general radial variations of the equi-
librium profiles, present in global gyrokinetic simulations
[14,15], can generate a Reynolds stress and suppress
transport.
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