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We show, in the context of single-photon detection, that an atomic three-level model for a transmon in a

transmission line does not support the predictions of the nonlinear polarizability model known as the

cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence of a single

photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests

that cross-Kerr media are not suitable for photon counting or related single-photon applications. Our

results are presented in the context of a transmon in a one-dimensional microwave waveguide, but the

conclusions also apply to optical systems.
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The cross-Kerr effect, whereby the phase of one field is
changed proportional to the intensity of another, arises
from the nonlinear response of an atomic medium to
applied fields. It is usually described phenomenologically
in terms of a third order term in the nonlinear polarizabil-
ity, a description that is valid when the applied fields are
strong and absorption is weak [1]. Microscopic derivations
of the Kerr effect are discussed in Refs. [2–4].

Many proposed quantum applications of the cross-Kerr
effect suppose that at least one of the fields is very weak—
perhaps only a single photon—including nondemolition
measurements [5–8], state preparation [9–13], teleporta-
tion [14], and logic gates buildup [15–19]. These schemes
require strong Kerr nonlinearities at the single-photon
level. It is not clear that the standard model of a cross-
Kerr effect, based on a third-order nonlinear polarizability,
should be valid for such weak fields.

Doubts regarding the utility of the Kerr effect in single-
photon applications have been raised before. Shapiro and
Razevi [20,21] considered the multimode nature of the
single-photon pulse and found that there is extra phase noise
compared to simple single mode calculations, leading to
constraints on the achievable phase shifts. Gea-Banacloche
[22] pointed out that it is impossible to obtain large phase
shifts via the Kerr effect with single-photon wave packets.
None of this prior work has addressed in detail the question
of the cross-Kerr phase shift on a coherent probe field in the
presence or absence of a single photon in the control field.

Recently, superconducting circuits have become impor-
tant test beds for microwave quantum optics, demonstrat-
ing quantized fields, artificial ‘‘atoms’’ (i.e., with
well-resolved energy levels), and strong ‘‘atom’’-field
interactions [23–25]. The transmon [26] is a promising
superconducting artificial atom due to its insensitivity to
1=f noise, strong anharmonicity, and large dipole moment.

Indeed, the typical size of a transmon is comparable to the
dielectric gap in an on-chip microwave waveguide, and so
the dipole moment is within an order of magnitude of the
maximum that it can possibly be, given the geometrical
constraints of the dielectric gap [27]. This fact leads to very
large cross-Kerr nonlinearities, where the transmon pro-
vides the nonlinear polarizability. Recent experiments
using a superconducting transmon in a 1D microwave
transmission line have demonstrated gigantic cross-Kerr
nonlinearities: a control field with on average one photon
induces a phase shift in the probe field of 11 degrees [28].
Importantly, in this experiment, the microwave fields were
freely propagating; no cavity was involved.
This large cross-Kerr phase shift immediately suggests

the possibility of constructing a broadband, number-
resolving, microwave-photon counter, as long as the
cross-Kerr induced displacement of the probe exceeds the
intrinsic quantum noise in the probe. Indeed, broadband
microwave photon counting is a crucial missing piece of
the experimental quantum microwave toolbox, although
there are several proposals for detecting microwave pho-
tons [29–33].
In fact, the cross-Kerr interaction is strictly an effective

interaction based on weak field-dipole coupling approxi-
mations. Ultimately it is mediated by the strong nonline-
arities inherent in an anharmonic oscillator (e.g., an atom),
so it must eventually break down. The microscopic dy-
namics become important in the limit of very strong
coupling, which was achieved in Ref. [28]. In this work
we investigate the coupled field-transmon dynamics in this
limit, using proposals for microwave-photon counting as a
technical objective to evaluate the validity of the cross-
Kerr approximation.
We consider two fields, a probe and a control, incident

on a transmon, which is treated as a three-level, �-type
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system in a one-dimensional transmission line. Such three-
level systems are prototypes for analyzing cross-Kerr non-
linearities [6]. We treat the transmon dynamics exactly,
including quantum noise in the incident fields. The probe is
assumed to be a coherent field (or possibly squeezed),
while the control field is in a Fock state, whose photon
number, n, we are trying to measure. For our purposes, we
restrict to n ¼ 0 or 1.

We show that in spite of the very large cross-Kerr
nonlinearity, the induced probe displacement (i.e., the
signal) in the presence of a single control photon is limited
by saturation of the transmon, and is always less than the
probe’s own quantum noise. That is, the signal-to-noise
ratio (SNR) is always below unity. Moreover, our
conclusion also extends to the N-type four-level atomic
level configuration, with which cross-Kerr media are often
modeled [34–37]. These conclusions have profound
implications for the quantum applications of cross-Kerr
phenomena.

The transmon levels are fjai; jbi; jcig, with correspond-
ing energy levels,!i, and decay rates,�i, as shown in Fig. 1.
Relaxation between transmon energy levels is fast com-
pared to dephasing rates, which we neglect. The probe field,

b̂, is in a coherent state j�i, and is nearly resonant with the
jbi $ jci transition, while the control field is in a Fock state
of n ¼ 0 or 1 photons, at a frequency !con close to the
jai $ jbi transition. Qualitatively, the control field induces
a transient population transfer into the state jbi, and the
probe field induces transmon polarization, �bc, between
states jbi and jci. This polarization couples back to the
probe field, so that the probe field is modified from its input
state according to the standard input-output relation

b̂ out ¼ b̂in þ ffiffiffiffiffiffi
�c

p
�̂bc; (1)

where b̂ is the annihilation operator of the probe field. The
homodyne detector monitoring the output probe field yields
a photocurrent given by

Jhomn ðtÞ ¼ hŷðtÞi þ �ðtÞ; (2)

where ŷ ¼ �i
ffiffiffiffiffiffi
�c

p ð�̂bc � �̂cbÞ is the transmon polariza-

tion, �̂ij ¼ jiihjj, and �dt ¼ dWðtÞ is a Weiner process

satisfyingE½dW� ¼ 0,E½d2W� ¼ dt. HereE½X� represents
the classical expectation value of the variableX. Finally, the
useful signal is the weighted integral of the homodyne
current over the lifetime, T, of the photon wave packet

Sn ¼
Z 1

0
dt Jhomn ðtÞwðtÞ (3)

where wðtÞ is a weight function. To be more specific, we
choose fðtÞ to be the ‘‘top-hat’’ function, wðtÞ ¼ 1 for
0< t < T, wðtÞ ¼ 0 otherwise. If n ¼ 0 the transmon dy-
namics are trivial, and E½S0� ¼ 0. For n ¼ 1, E½S1� � 0,
and so S1 represents the useful signal associated with a
single photon in the control field. However, in any given
measurement, the homodyne current includes quantum
noise, characterized by the variance ð�SnÞ2 ¼ E½S2n� �
E½Sn�2. To a good approximation, �Sn is independent of

the photon number, n, sowe define the signal-to-noise ratio,

SNR ¼ E½S1�=ð
ffiffiffi
2

p
�SÞ. Note that we assume that the ho-

modyne current will also include technical noise sources.
We ignore these, so that the SNR represents the quantum
limit for this scheme.
To study quantitatively the system consisting of a trans-

mon interacting with propagating microwave fields, we
adopt two different (but consistent) formulations, yielding
both numerical and analytic results.
In the first formulation we suppose the control photon is

generated by a fictitious cavity which is initially in a Fock
state. The field in the cavity decays into the 1D waveguide,
and propagates to the transmon, which mediates the inter-
action between the control and the probe [38]. To analyze
this system, we employ a stochastic cascaded master equa-
tion (SME) [39,40]. The SME describing the conditional
dynamics of the cascaded cavity field-transmon density
matrix, �, is given by

d� ¼ ð�i½Hs; �� þ �conD½âcon��þD½L̂b��
þD½L̂c��Þdtþ ffiffiffiffiffiffiffiffiffi

�con

p ð½L̂b; �â
y
con�

þ ½âcon�; L̂y
b �ÞdtþH ½L̂ce

�i�=2��dW (4)

where L̂b ¼ ffiffiffiffiffiffi
�b

p
�̂ab, L̂c ¼ ffiffiffiffiffiffi

�c
p

�̂bc and

Hs ¼ �c�̂cc þ�b�̂bb þ�pð�̂bc þ �̂cbÞ;
D½r̂�� ¼ 1

2
ð2r̂�r̂y � �r̂yr̂� r̂yr̂�Þ;

H ½r̂�� ¼ r̂�þ �r̂y � Tr½r̂�þ �r̂y��;
�b ¼ !ba �!con, �c ¼ �p þ �b (�p ¼ !bc �!p)

�p ¼ ffiffiffiffiffiffiffiffiffi
�con

p
�, � is the amplitude of the coherent probe

FIG. 1 (color online). (a) Illustrative experimental arrange-
ment. A photon source emits a Fock state microwave photon
into a 1D planar transmission line with a �-type three-level
transmon embedded in it. (b) Transmon level structure. The
coherent probe couples jbi $ jci, and the control couples jai $
jbi. The interaction induced phase shift in the probe field is
detected by homodyne detection. (c) Cartoon of the Kerr-
induced probe displacement.
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field, âcon ðâyconÞ are the annihilation (creation) operators
for the control field, and �con is the control photon line-
width. Line 2 of Eq. (4) describes the unidirectional evo-
lution between the photon source and the transmon. We
solve Eq. (4) for the conditional state of the field-transmon
system, from which we compute the conditional homodyne
photocurrent, using Eq. (2). This approach allows us to
generate a simulated measurement record for ensembles of
events in which n ¼ 0 or 1, from which we obtain a
histogram of homodyne currents to estimate the SNR.

The second formulation uses the Fock state master
equation (FME) [41,42], in which the propagating photon
wave packet drives the transmon directly [43]. The trans-
mon density matrix, �m;n, acquires indices representing

coherences between the transmon and photon Fock sub-
spaces m and n. The FME is then

_�m;nðtÞ ¼ �i½Hs; �m;n� þD½L̂b��m;n þD½L̂c��m;n

þ ffiffiffi
n

p
f�ðtÞ½L̂b; �m;n�1� þ

ffiffiffiffi
m

p
fðtÞ½�m�1;n; L̂

y
b �
(5)

where fðtÞ is a complex valued probability amplitude that
determines the photon counting rate, jfðtÞj2. We first solve
the dynamics for �0;0ðtÞ, which drives �0;1ðtÞ and �1;0ðtÞ,
which in turn drives �1;1ðtÞ. Then, using the quantum

regression theorem [44], we calculate the SNR analytically
[45], part A.

If the photon is derived from exponential (E) decay of a
cavity mode, then fðtÞ ¼ ffiffiffiffiffiffiffiffiffi

�con
p

expð��cont=2Þ. Further,
this method can handle arbitrary photon wave packets,
and we include Gaussian (G) and rectangular (R), shown
in Fig. 2(top), where T ¼ 1=�con is the pulse’s temporal
width. The photon induces a polarization, hŷðtÞi, in the
transmon, shown in Fig. 2(bottom). Different pulse shapes
yield modest differences in hŷðtÞi.

Figure 3 shows the SNR as a function of the probe
amplitude with detunings and �con optimized. The points
represent 5000 trajectories of the SME, while the solid line
is computed from the FME, showing good agreement. The
inset shows histograms of stochastic calculations of the
integrated homodyne current with n ¼ 0 and n ¼ 1 (using
parameters that optimize the SNR). Figure 4 shows the
SNR versus the detunings �b and �c. Clearly, the optimal
SNR is located at �b ¼ �c ¼ 0. We also numerically
investigated the effect of varying the ratio �c=�b and for
1<�c=�b < 100 found that the SNR changes little from
the value for the transmon �c=�b ¼ 2, and remains less
than unity [45]. Regardless of parameter settings the SNR
is less than unity, so we conclude it is impossible to reliably
distinguish between n ¼ 0 and 1 in a single shot. This is
borne out by the large overlap of the histograms.

We can understand the fact that SNR <1 in the follow-
ing way: a single control photon induces a variation in the
transmon polarization ŷ, which manifests as a fluctuation
in the homodyne current according to Eq. (2). However the

polarization of the transmon is a bounded operator: jjŷjj �ffiffiffiffi
�

p
b. The optimal photon wave packet width is T � ��1

b

(any shorter and the transmon cannot respond to the field;
any longer and vacuum noise in the homodyne signal
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FIG. 2 (color online). The transmon responses for different
control field wave packets. (top) Blue dot-dashed curve,
Gaussian pulse (G); green solid curve, rectangular pulse (R);
orange dashed curve, exponentially-decayed pulse (E); and
(bottom) the corresponding polarisation response of the trans-
mon. The parameters are �c ¼ �b ¼ 0, �con ¼ 0:6672�b, �c ¼
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grows), so the expected signal is bounded by jE½S1�j �R
T
0 dtjjŷjj � ��1=2

b . Quantum noise in Eq. (2) gives �2
S �

var½RT
0 dt�� ¼ ��1

b so we see that SNR¼jE½S1�j=�S�1.
Figure 3 bears out this analysis: for small probe field
amplitudes, the SNR increases, however the transmon
dynamics eventually saturates at large amplitudes.

This argument suggests that the fundamental problem is
the saturation of the transmon transition. It may be thought
that this can addressed by increasing the number of trans-
mons. We therefore briefly consider a system of N trans-
mons, arranged such that the spacing between adjacent
transmons is much smaller than the wavelength, the trans-
mons are described by the collective atomic spin operators

Ŝ ij ¼ 1ffiffiffiffi
N

p X

k

�k
ij: (6)

The stochastic master equation describing the n-transmon
system is given by

d� ¼ �i½Hs; ��dtþ �conD½âcon��dtþ N�bD½Ŝab��dt
þ N�cD½Ŝbc��dt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�con�b

p ð½Ŝba; âc��
þ ½�âyc ; Ŝab�Þdtþ

ffiffiffiffiffiffiffiffiffiffi
N�c

p
H ½Ŝbce�i�=2��dW (7)

where

Hs ¼ Nð�cŜcc þ �bŜbÞ þ
ffiffiffiffiffiffiffiffiffiffi
N�c

p
�ðŜbc þ ŜcbÞ: (8)

We can see that the ensemble master equation (7) is the
same form as the single-transmon master equation, albeit
with decay rates and energies scaled by an N-dependent
factor, leading to faster dynamics. This merely rescales the

parameters in the problem, so this cannot increase the SNR
above the optimized single transmon case.
It is worth commenting on a number of other avenues

that we have explored, but which yield similar negative
results (for details, see the Supplemental Material [45]).
First, squeezing the probe field in an appropriate quad-

rature reduces the homodyne noise, and may improve the
SNR. Since we are monitoring the phase displacement of
the probe field, we should squeeze in this quadrature.
However this enhances noise in the conjugate, amplitude
quadrature. The additional noise in the probe amplitude
adds noise to the transmon dynamics arising from fluctua-
tions in �p, which ultimately feed through to the output

field. We find numerically that these tradeoffs yield no net
improvement in the SNR [45].
Second, if the control photon interacts sequentially with

M transmons in series, each with independent probes, the

overall SNR would be increased by a factor of M1=2.
However, the Kramers-Kronig relations require that a large
phase shift implies a large reflection probability, so that
there is a tradeoff between the phase shift versus reflection
probability at each transmon. Again, we find numerically
that the tradeoff yields no net improvement in SNR [45].
Third, some schemes for inducing cross-Kerr nonline-

arities in optical systems use an N-type four-level system
[34,35], with a strong classical field addressing the inter-
mediate transition. In the limit of strong driving, this maps
onto the same three-level structure we consider in this
Letter, so the conclusions we have reached here also apply
to such N-type systems [45].
A number of proposals suggest using weak Kerr media

to build controlled phase and controlled-NOT gates with
fewer resources than linear optical schemes [17,19]. In
these schemes the cross-Kerr phase shift per photon is
much less than �, so a strong coherent bus compensates
for the weak nonlinearity, such that the small cross-Kerr
phase shift manifests as a large displacement of the strong
coherent field. However the saturation of the cross-Kerr
effect described above indicates that once the displacement
of the strong coherent field approaches its own quantum
noise, saturation effects lead to the breakdown of the
effective cross-Kerr description, rendering such protocols
ineffective.
In summary, we have investigated the feasibility of

microwave photon counting based on an induced cross-
Kerr nonlinearity arising from coupling to a large anhar-
monic dipole. We find that saturation of the transmon
transition limits the SNR to less than unity. As such, it is
not possible to use strong, atom-induced cross-Kerr non-
linearities to perform single-photon detection. This con-
clusion applies to a number of extensions of the basic
model, including multiple transmons, cascaded transmons,
and an N-type, four-level system. Further, it limits the
applicability of any proposal that requires a cross-Kerr
nonlinearity to produce a displacement of a coherent field
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by an amount greater than the intrinsic quantum noise in
the coherent field: it is precisely in this condition where the
effective cross-Kerr description breaks down, and satura-
tion effects become dominant.
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