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We investigate Lee-Yang zeros of generating functions of dynamical observables and establish a

general relation between phase transitions in ensembles of trajectories of stochastic many-body systems

and the time evolution of high-order cumulants of such observables. This connects dynamical free

energies for full counting statistics in the long-time limit, which can be obtained via large-deviation

methods and whose singularities indicate dynamical phase transitions, to observables that are directly

accessible in simulation and experiment. As an illustration, we consider facilitated spin models of glasses

and show that from the short-time behavior of high-order cumulants, it is possible to infer the existence

and location of dynamical or ‘‘space-time’’ transitions in these systems.
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Introduction.—Phase transitions are a central topic in the
statistical mechanics of equilibrium and nonequilibrium
systems. In problems with physically meaningful interac-
tions, phase transitions occur in the limit of large system
size. For dynamical phase transitions, this also implies the
limit of long times. In experiment or simulation of systems
with complex dynamics, however, often only the short-time
dynamics can be probed, making it difficult to investigate
dynamical transitions. Furthermore, such nonequilibrium
transitions may be driven by ‘‘counting’’ fields [1–8] which
can be hard to relate to physically accessible parameters.
In this Letter, we provide a potential resolution to these
problems by establishing a connection between phase tran-
sitions in ensembles of long-time dynamical trajectories
of classical stochastic many-body systems [1–5] and the
dynamics of physical observables at short times [9–11].

Figure 1 illustrates our approach and results. Panel
(a) shows a dynamical trajectory of a simple lattice system
which displays complex dynamics, in this example, the
one-dimensional East model of a glass former [12].
Facilitated models such as the East model show pro-
nounced dynamical spatial fluctuations [13] (a phenome-
non characteristic of glasses known as dynamical
heterogeneity; for reviews see Refs. [14–16]). These large
spatio-temporal fluctuations give rise to fat tails [17] in the
full counting statistics [18] of time-extensive dynamical
observables. This is shown in Fig. 1(b) for the dynamical
activity k � K=t per unit time of the East model. The
dynamical activityK is the number of configuration changes
in a trajectory [1,2,4,19]. Associated with the distribution
PðK; tÞ is the moment generating function (MGF) Zðs; tÞ �P

Ke
�sKPðK; tÞ, which at long times t! 1 has a large-

deviation (LD) form, Zðs; tÞ / expft�ðsÞg [1–5]. The LD
function��ðsÞ is a dynamical free energy for the counting
process. Its analytic properties carry information about the
phase behavior of ensembles of trajectories.

In the East model example, �ðsÞ has a first-order singu-
larity at sc ¼ 0, Fig. 1(c), which indicates that dynamics
takes place at the coexistence of two dynamical or ‘‘space-
time’’ phases, an active phase with hkiðsÞ � �@s�ðsÞ> 0
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FIG. 1 (color online). Dynamical phase transitions and Lee-
Yang zeros. (a) Trajectory of the one-dimensional East model,
showing the state of up or down (black or white) spins on the lattice
in time (with temperature T ¼ 0:8, N ¼ 150 lattices sites, and
tmax ¼ 1000 time steps); dynamic heterogeneity is evident in the
‘‘space-time bubbles’’ of the trajectory [13]. (b) Probability Pðk; tÞ
of the activity k � K=t per unit time (full curve); dashed line is a
Gaussian distribution with same mean and variance. (c) The LD
function �ðsÞ is singular at sc ¼ 0 (top) where the average activity
is discontinuous (bottom), indicative of a first-order dynamical
transition [2]. (d) Lee-Yang zeros of the MGF in the complex-s
plane, extracted from the cumulants of K, allow us to extrapolate
sc from short-time observables.
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for t! 1 (the equilibrium phase where relaxation is pos-
sible) and an inactive phase with hkiðsÞ ¼ 0 (the dynamical
‘‘glass’’ phase) [2]. The variable s driving the transition is
a ‘‘counting’’ field which biases the trajectory ensemble
from the actual dynamical one at s ¼ 0, but whose con-
nection to physically controllable parameters can be hard
to establish. Similar trajectory phase transitions are
observed in other classical and quantum systems with
complex dynamics [3–8].

Here, we demonstrate that it is possible to infer the
existence and location of singularities of �ðsÞ, indicative
of phase transitions in the space of long-time trajectories,
from short-time observables at s ¼ 0. Specifically, we
show that (i) from a dynamical version of the Lee-Yang
theorem [20], zeros of the MGF in the complex-s plane at
finite t will move to the real-s line in the limit of t! 1 if
there are any singularities in �ðsÞ, and (ii) these zeros can
be obtained from the short-time and finite-size behavior
of cumulants [9–11] of dynamic observables such as the
activity. Figure 1(d) illustrates this result for the East
model: the sc ¼ 0 singularity of the thermodynamic and
long-time limit can be extrapolated from the leading Lee-
Yang zeros extracted from short-time (typically, on the
order of the relaxation time) cumulant dynamics. This
offers the possibility of studying trajectory phase transi-
tions in full counting statistics via observables that are
directly accessible in simulation and experiment.

Formalism.—For concreteness, we consider stochastic
processes described by the master equation [21]

@tPðC; tÞ ¼ �rðCÞPðC; tÞ þ
X
C0
WðC0 ! CÞPðC0; tÞ: (1)

Here, PðC; tÞ is the probability that the system is in the
configuration C at time t. The transition rate from configu-
ration C0 to C is denoted as WðC0 ! CÞ and rðCÞ ¼P

C0WðC ! C0Þ is the total escape rate from C. By definition,
WðC ! CÞ ¼ 0. Equation (1) can be written in the conve-
nient matrix notation @tjPðtÞi ¼WjPðtÞi, where the matrix
W is defined as

WðC; C0Þ � WðC0 ! CÞ � rðCÞ�C;C0 ; (2)

and the vector jPðtÞi contains the probabilities PðC; tÞ’s.
We classify trajectories according to their dynamical

activity K—the total number of spin-flips in the case of
spin models considered here [1,2]. (Similar arguments
can be applied to analyze ensembles of trajectories classified
by other time-extensive dynamic observables, see, e.g.,
Refs. [1–3].) The probability that the system is in configura-
tion C at time t, having changed configuration K times, is
denoted as PðCjK; tÞ. Then PðK; tÞ ¼ P

CPðCjK; tÞ and
Zðs; tÞ ¼ P

CPðC; s; tÞ, where PðC;s;tÞ¼P
KPðCjK;tÞe�sK

[1,2]. The corresponding vector jPðs; tÞi obeys @tjPðs; tÞi ¼
WsjPðs; tÞi, where the generalized master operator is [1,2]

WsðC; C0Þ � e�sWðC0 ! CÞ � rðCÞ�C;C0 : (3)

Formally, the solution to Eq. (3) is jPðs; tÞi ¼ eWstjPð0Þi,
assuming, for instance, that the initial state jPð0Þi is the
equilibrium distribution defined by Ws¼0jPð0Þi ¼ 0.
By using the ‘‘flat’’ state, h�j � ð1; . . . ; 1Þ, we can express

the MGF as Zðs; tÞ ¼ h�jPðs; tÞi ¼ h�jeWstjPð0Þi ¼P
jcjðsÞe�jðsÞt in terms of the eigenvalues �jðsÞ of Ws and

corresponding expansion coefficients cjðsÞ. The cumulant

generating function (CGF) is defined in terms of theMGF as
�ðs; tÞ � logZðs; tÞ, which delivers the cumulants of K by
differentiation with respect to the counting variable s
at s ¼ 0,

hhKniiðtÞ ¼ ð�1Þn@ns�ðs; tÞjs!0: (4)

At long times, the MGF function becomes exponential in
time [1]; its rate of change is determined by the eigenvalue
with the largest real-part, such that �ðs; tÞ ! t�ðsÞ, where
�ðsÞ � max½�jðsÞ� is the LD function.

Singularities and dynamical transitions.—Fluctuations
in the dynamical system can be understood from the
analytic properties of �ðsÞ. For example, a first-order
dynamical phase transition corresponds to singularities in
�ðsÞ so that its first derivative is discontinuous [2], see
Fig. 1(c). This occurs at a real s ¼ sc, where the two largest
eigenvalues of Ws become degenerate, �0ðscÞ ¼ �1ðscÞ.
As a central result of this Letter, we show below how
such dynamical phase transitions, occurring in the long-
time limit, can be inferred from the high-order cumulants
of K at finite times and at s ¼ 0, i.e., evolving under the
unbiased dynamics.
To this end, we consider the zeros of the MGF in the

vicinity of the transition value, s ’ sc, where the two
largest eigenvalues are nearly degenerate �0ðsÞ ’ �1ðsÞ
and we may write Zðs; tÞ ’ c0ðsÞe�0ðsÞt þ c1ðsÞe�1ðsÞt. The
zeros of the MGF are determined by the equations �0ðsÞ ¼
�1ðsÞ þ ½logc1ðsÞ=c0ðsÞ þ i�ð2mþ 1Þ�=t for integer m. In
the long-time limit, these equations all reduce to �0ðsÞ ¼
�1ðsÞ, and thus, with increasing time, all zeros sjðtÞ move

towards the transition value sc on the real-axis. (At finite
times, the zeros must be complex, since Zðs; tÞ> 0 for
real s.) This is in essence the theory of phase transitions
of Lee and Yang [22], here applied to dynamical systems
[22]. Accordingly, we refer to the (time-dependent) zeros
sjðtÞ of the MGF as Lee-Yang zeros.

High-order cumulants and Lee-Yang zeros.—The motion
of the Lee-Yang zeros in the complex plane can be inferred
from the high-order cumulants of K. Importantly, the zeros
of the MGF correspond to logarithmic singularities of the
CGF which determine the high-order derivatives of the
CGF (the cumulants) according to Darboux’s theorem
[23]. Writing the MGF in terms of the Lee-Yang zeros as
Zðs; tÞ ¼ Q

j½sjðtÞ � s�=sjðtÞ, where Zð0; tÞ ¼ 1 reflects

the normalization
P

KPðK; tÞ ¼ 1 at all times, the CGF
becomes �ðs; tÞ ¼ P

jðlog½sjðtÞ � s� � log½sjðtÞ�Þ. The

Lee-Yang zeros come in complex-conjugate pairs, since
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the MGF is real for real s. Combined with Eq. (4), we
readily find [9–11]

hhKniiðtÞ ¼ ð�1Þðn�1Þðn� 1Þ!X
j

e�in argfsjðtÞg

jsjðtÞjn : (5)

This result shows that higher-order cumulants generically
grow as the factorial of the cumulant order n, and oscillate
as a function of any parameter that changes the complex
argument argfsjðtÞg [9]. This behavior has been observed

experimentally [9,24]. For large n, the sum is dominated
by the pair s0ðtÞ and s�0ðtÞ of zeros closest to s ¼ 0, and the
expression further simplifies to [9–11,25]

hhKniiðtÞ ’ ð�1Þðn�1Þðn� 1Þ! 2 cos½n argfs0ðtÞg�js0ðtÞjn : (6)

We can solve this simple relation for s0, given the ratios of

cumulants �ð�Þn ðtÞ � hhKn�1iiðtÞ=hhKniiðtÞ. We then obtain
the matrix equation

1 � �ðþÞn

n

1 � �ðþÞ
nþ1

nþ1

2
64

3
75 �ðs0 þ s�0Þ

js0j2
" #

¼ ðn� 1Þ�ð�Þn

n�ð�Þnþ1

2
4

3
5; (7)

which directly yields s0ðtÞ from four consecutive cumu-
lants [10,11,26]. We now employ this method to investi-
gate dynamical phase transitions in kinetically constrained
models of glass formers.

Dynamical transitions in facilitated glass models.—As
an example of how the ideas above can be applied, we
study trajectory transitions [2] in facilitated spin models of
glasses [12]. For simplicity, we consider one-dimensional
models, defined in terms of binary variables ni ¼ 0, 1,
where i ¼ 1; . . . ; N denote sites on a chain. The energy
function is E ¼ J

P
ini, and all interactions emerge via

kinetic constrains, which stipulate that a site i changes
with a rate that is determined by the state of its nearest
neighbors i� 1 [12]. Concretely, we focus on the
Fredrickson-Andersen (FA) model [27] and on the East
model [28]. In the FA model, a site can only change if
either of its nearest neighbors is in the up state, i.e.,
the transitions 11! 10 and 11! 01 occur with rate 1,

11 10 and 11 01 with rate e�J=T , but 010⇋ 000 are
not allowed. In the East model, facilitation is via the left
neighbor only, so that 11! 10 and 11 10 occur with

rates 1 and e�J=T , respectively, but 01⇋ 00 are not
allowed. At low T, there is a conflict between lowering
the energy and having enough excited spins to evolve
dynamically, which gives rise to glassy slow-down and
dynamical heterogeneity [12,13] in these systems; the
East model, in particular, seems to capture the basic phys-
ics of glassy dynamical arrest [16].

Results.—Figure 2 shows our numerical simulations for
the high-order cumulants of the activity K as functions of
time for the East and FAmodels (full lines). The cumulants
grow dramatically with the cumulant order and oscillate as

functions of time (the absolute value is shown on a
logarithmic scale, such that downwards-pointing spikes on
the curves correspond to the cumulants crossing zero). This
is due to the Lee-Yang zeros sjðtÞ approaching the transition
value at sc ¼ 0 according toEq. (5), causing the largegrowth
of the cumulants. Initially,PðK; t ¼ 0Þ ¼ �K;0 and all cumu-

lants of the activity are zero, implying that the Lee-Yang
zeros are infinitely far from sc ¼ 0 and 1=jsjðt ¼ 0Þj ¼ 0.

At very short times, where PðK ¼ 0; tÞ � 1> Pð1; tÞ �
Pð2; tÞ � . . . , the leading pair of Lee-Yang zeros are deter-
mined by the equation Zðs; tÞ ’ Pð0; tÞ þ Pð1; tÞe�s ¼ 0
with solutions s0ðtÞ; s�0ðtÞ ¼ � logfPð0; tÞ=Pð1; tÞg � i�.
Thus, to begin with the Lee-Yang zeros move along the lines
�i� from �1� i�, before approaching sc ¼ 0. We now
use Eq. (7) to deduce the motion of the leading Lee-Yang
zeros from the numerical data.
Figure 1(d) shows the leading pair of Lee-Yang zeros,

s0ðtÞ and s�0ðtÞ, for the East model with N ¼ 30 sites at

temperature T ¼ 0:8 as they move towards the first-order
transition point at sc ¼ 0. To validate the extraction of the
leading Lee-Yang zeros from the cumulants of the activity
using Eq. (7), we plug the solution s0ðtÞ back into Eq. (6)
and compare the result with the numerical data. In Fig. 2,
we show the numerical results (full lines) together with the
approximation in Eq. (6) based on the extracted pair of
Lee-Yang zeros (dashed line). The figure corroborates that

FIG. 2 (color online). High-order cumulants of the activity in
facilitated models of glass formers. The upper (lower) panels
show the time-evolution of the cumulants of order n ¼ 4–7 for
the East (FA) model with N ¼ 30 sites at T ¼ 0:8 (left) and T ¼
1:0 (right). Simulations are shown with full lines, while dashed
lines indicate the approximation Eq. (6) based on the closest pair
of Lee-Yang zeros which are extracted from the numerical data
using Eq. (7). The motion of the closest pair of Lee-Yang zeros
corresponding to the East model at T ¼ 0:8 is shown in Fig. 1(d).
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we indeed are extracting the leading pair of Lee-Yang
zeros. Some deviations, in particular at long times, are
observed as the second pair of Lee-Yang zeros also come
close to s ¼ 0 and start contributing significantly to the
sum in Eq. (5). Since the second pair of Lee-Yang zeros is
not included in Eq. (6), a shift in the frequency of the
oscillations as a function of time is also observed. If
needed, the accuracy of the method can be improved by
using higher cumulants [10,11,26].

In Fig. 3, we analyze the finite-size scaling of the
transition point sc. The real-part of the transition point is
predicted to scale as [29]

Re ½scðtÞ� ’ �=tþ sð1Þc ðNÞ; (8)

where the coefficient � depends on the temperature T, and

sð1Þc ðNÞ / 1=N is the long-time value, which for the
East and FA models should approach sc ¼ 0 in the limit
N ! 1. Our numerical results for the East and FA models
confirm the predicted scaling behavior. For each system
size in the range N ¼ 15 to 50, we find an approximately
linear dependence on the inverse time 1=t, allowing us to

extrapolate the values of sð1Þc ðNÞ in the t! 1 limit. We
also verify that the imaginary part of sc approaches zero in
the long-time and large-system limit, see upper insets.

In the lower insets, we show the extrapolated values of

sð1Þc ðNÞ as a function of the inverse system size 1=N. These
results show that the value sc ¼ 0 is approached in the
large-system-size limit. Some deviations are seen for the
larger systems as we reach the limits of the numerical
accuracy of our method. Our results show that it is possible
to infer the existence and location of dynamical singular
points, which are indicative of phase transitions in the
space of long-time trajectories, from high-order short-
time cumulants at s ¼ 0. The typical time scale necessary
to infer a dynamical phase transition is on the order of the
relaxation time. Our method can also be used for systems
where the transition point on the real-s line is at sc � 0 [5].
Conclusions.—We have investigated the Lee-Yang zeros

of generating functions of dynamical observables and
demonstrated how singularities in the long-time limit,
indicative of dynamical phase transitions, can be inferred
from the short-time dynamics of high-order cumulants in
finite-size systems. We hope that our approach may facili-
tate theoretical and experimental studies of trajectory
phase transitions in stochastic many-body systems. An
important task to address in future work is to apply similar
ideas to dynamical phase transitions in quantum many-
body systems [7,8].
The work was supported by Swiss NSF, by EPSRC
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