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The evaluation of the minimal evolution time between two distinguishable states of a system is

important for assessing the maximal speed of quantum computers and communication channels. Lower

bounds for this minimal time have been proposed for unitary dynamics. Here we show that it is possible to

extend this concept to nonunitary processes, using an attainable lower bound that is connected to the

quantum Fisher information for time estimation. This result is used to delimit the minimal evolution time

for typical noisy channels.
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Introduction.—Quantum mechanics imposes funda-
mental limits to the processing speed of any device as
well as to the communication speed through any channel.
Derivation of these basic limits usually assumes that
such devices are noiseless, undergoing unitary evolutions
[1–38]. The relevant (and often unwanted) influence
of the environment on processing or information-
transferring systems is thus frequently ignored. On the
other hand, this influence, and in particular the decoher-
ence speed, plays an essential role in fundamental
physics, especially in the understanding of the quantum-
to-classical transition [39]. Here we unify the description
of both computation or communication speed and
decoherence speed in a single framework, which deals
with the maximal speed of evolution of quantum
systems.

Although much work has been done on the subject since
the first major result by Mandelstam and Tamm [1], scarce
contributions [40–44] undertake nonunitary evolutions.
In this Letter, we develop a method that allows one to
derive useful saturable lower bounds for the minimal
evolution time for general physical processes. Besides
recovering, in the proper limits, previous findings such as
the Mandelstam-Tamm bound [1], our result allows the
study of experimentally more realistic open systems and
the development of a systematic approach for tackling such
nonunitary evolutions. This approach relies on variational
techniques, allowing one to obtain nontrivial analytical
approximations to the bounds in situations where exact
calculations are too involved. We exemplify the usefulness
of this bound by considering typical nonunitary quantum
channels.

General bound for the minimal evolution time.—We
present here a general lower bound on the time � necessary
for a quantum system, evolving under the action of some
physical process, to reach a final state that has a distanceD
from its initial state.

Let D½FBð�̂1; �̂2Þ� be a metric on the space of
quantum states that depends on �̂1, �̂2 solely via the
Bures fidelity FB,

FBð�̂1; �̂2Þ :¼
�
tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂1

p
�̂2

ffiffiffiffiffiffi
�̂1

pq ��
2
: (1)

Consider now a smooth dynamical process in this space,
parametrized by t, and leading to an evolution described by
the density operator �̂ðtÞ, such that DfFB½�̂ðt1Þ; �̂ðt2Þ�g
[written as Dðt1; t2Þ in a shorthand notation] is a piecewise
smooth function of t1, t2. A bound on Dð0; �Þ can be
obtained in terms of the integral of the quantum Fisher
information for time estimation FQðtÞ along the path

determined by system evolution. F QðtÞ may be defined

by FQðtÞ ¼ Tr½�̂ðtÞL̂2ðtÞ� [45], where the Hermitian op-

erator L̂ðtÞ is known as the symmetric logarithmic deriva-

tive operator, implicitly defined by d�̂ðtÞ=dt ¼ ½�̂ðtÞL̂ðtÞþ
L̂ðtÞ�̂ðtÞ�=2. In order to derive the bound on Dð0; �Þ, one
applies to this metric the triangle inequality, considering a
division of the interval (0, �) into infinitesimal pieces, and
one uses the relation between the Bures fidelity and the
quantum Fisher information F QðtÞ [45],

FBðt; tþ dtÞ ¼ 1� ðdtÞ2FQðtÞ=4þOðdtÞ3: (2)

This equation attaches a physical meaning to the quantum
Fisher information: the square root of F QðtÞ is propor-

tional to the instantaneous speed of separation between two
neighboring states �̂ðtÞ and �̂ðtþ dtÞ, and can be used to
delimit the minimal statistical uncertainty in the estimation
of the duration of a given physical process, as shown in
Ref. [45].
One gets then a general implicit lower bound on the

evolution time �, valid for arbitrary physical processes
and any metric dependent on the Bures fidelity (see
Supplemental Material [46]):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2DðFBÞ=dF2

B

2½dDðFBÞ=dFB�3
s ��������FB!1

Dð0; �Þ �
Z �

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FQðtÞ
4

s
dt; (3)

where the notation DðFBÞ makes explicit the dependence
of the metric on FB. The argument of the square root on the
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left-hand side of the above inequality is proportional to the
curvature of DðFBÞ at FB ¼ 1 (see Supplemental Material
[46]). Notice that this bound is invariant by a rescaling
D0 ¼ kD.

One should note that the right-hand side of Eq. (3) is the
Bures length, as defined by Uhlmann [47], of the actual
path followed by the state of the system �̂ðtÞ. On the other
hand, it has also been shown in Ref. [47] that the Bures
length of a geodesic joining two density operators �̂1 and

�̂2 is arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FBð�̂1; �̂2Þ

p
[48], which defines a natural

distance D between the two states. Inserting this expres-
sion into the left-hand side of (3), one obtains

D :¼ arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FB½�̂ð0Þ; �̂ð�Þ�

q
�

Z �

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FQðtÞ=4

q
dt: (4)

Since it is always possible to find a dynamical process that
joins �̂ð0Þ and �̂ð�Þ along a geodesic and saturates the
above inequality, one finds that the left-hand side of (3),
which depends only on the initial and final states, is
maximized by DðFBÞ ¼ arccos

ffiffiffiffiffiffi
FB

p
. Therefore, this is the

optimal choice for DðFBÞ in (3), and leads to an attainable
bound for the minimum evolution time, valid for unitary or
nonunitary processes. The above discussion makes it clear
that this bound is attained if and only if the evolution
occurs on a geodesic, which is, incidentally, the same
condition for attainability of the Mandelstam-Tamm bound
for unitary processes with time-independent Hamiltonians
[14]. This is an important requirement of quantum speed
limits.

Although Eq. (2), proposed in Ref. [45], corresponds to a
differential form of the right-hand side of Eq. (4), the
integration of this infinitesimal distance is far from
trivial. For instance, the Bures distance DBuresð0; �Þ ¼ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FBð�̂ð0Þ; �̂ð�ÞÞ
pq

, mentioned in Ref. [45], coin-

cides with the natural distance D for � ! 0, but does not
lead to an achievable upper bound for finite values of �.

Let us first consider a unitary evolution dictated by

an operator ÛðtÞ, which leads to a simple analytical
expression for the quantum Fisher information. In this

case, F QðtÞ ¼ 4h�Ĥ2ðtÞi=@2 [49], where h�Ĥ2ðtÞi is the

variance in the initial state of a Hermitian operator ĤðtÞ
defined as

ĤðtÞ :¼ @

i

dÛyðtÞ
dt

ÛðtÞ: (5)

For a time-independent Hamiltonian Ĥ, with ÛðtÞ ¼
e�iĤt=@, then ĤðtÞ ¼ Ĥ, and for D ¼ �=2 (orthogonal
states), inequality (4) leads to the Mandelstam-Tamm

bound: � � ð�@=2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Ĥ2i

q
. Equation (4) also recovers

the known implicit bounds on � for time-dependent
Hamiltonians [9,36].

For nonunitary evolutions, bound (4) can be hard to
evaluate analytically since the quantum Fisher information

may be difficult to calculate. In these situations, it is
convenient to resort to the following purification procedure
[50,51], which allows one to rely on the simple form of
F QðtÞ for unitary processes.

To each system of interest S, represented by the density
operator �̂S, one assigns an environment E, such that the
dynamics of �̂S results from a unitary evolution, corre-

sponding to an operator ÛS;EðtÞ, of a pure state of the

enlarged system Sþ E. The quantum Fisher information
of Sþ E is an upper bound to the quantum Fisher infor-
mation of system S, since, from the point of view of
parameter-estimation theory, Sþ E does not contain less
information about the parameter t than S alone. There are,
in fact, infinitely many different evolutions of Sþ E cor-
responding to the same evolution of system S, each of those
leading to a possibly different value of the quantum Fisher
information CQðtÞ of Sþ E. This freedom is integrally

expressed by writing the purified unitary evolution in

Sþ E as ûEðtÞÛS;EðtÞ, where ûEðtÞ is any unitary operator

acting only on E. Defining Ĥ S;EðtÞ by inserting the evo-

lution operator ûEðtÞÛS;EðtÞ into (5), one can write CQðtÞ ¼
4h�Ĥ 2

S;EðtÞi=@2. Then, for any upper bound CQðtÞ to

F QðtÞ, one can obtain an implicit lower bound to the

evolution time �, given by

D �
Z �

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CQðtÞ=4

q
dt ¼

Z �

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Ĥ 2

S;EðtÞi
q

=@dt: (6)

Since CQðtÞ can be straightforwardly evaluated, the above

bound may be easier to handle than bound (4). However,
it can only be tight when CQðtÞ ¼ F QðtÞ, in which case

it reduces to bound (4). In fact, as it was shown in
Refs. [50,51], it is always possible to fulfill this condition
by minimizing CQðtÞ over all operators ûEðtÞ, for given

ÛS;EðtÞ. As h�Ĥ 2
S;EðtÞi only depends on ûEðtÞ through

ĥEðtÞ,

ĥEðtÞ :¼ @

i

dûyEðtÞ
dt

ûEðtÞ; (7)

the minimization can be performed with respect to ĥEðtÞ
[50]. Notice that in some practical situations, it can be

advantageous to restrict the set of operators ĥEðtÞ over
which the optimization is done in order to obtain more
tractable, albeit still useful bounds on �. In the following,
we present examples that illustrate the power and useful-
ness of this approach.
Amplitude-damping channel.—Let S be a two-state

system (states fj0i; j1ig), and E its environment, which is
chosen to start in state j0iE. The amplitude-damping
channel is described by the map

j0ij0iE ! j0ij0iE; (8a)

j1ij0iE !
ffiffiffiffiffiffiffiffiffi
PðtÞ

p
j1ij0iE þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PðtÞ

p
j0ij1iE; (8b)
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where the state j1iE is orthogonal to j0iE, and the time
dependence of PðtÞ reflects the damping dynamics. We
consider here the paradigmatic exponential decay, with
rate �, so that PðtÞ ¼ e��t. We note that, for the above
map, the environment may also be considered as a qubit.
This channel, which corresponds to a nonunitary evolution
of S, can be described by the unitary evolution operator
acting on Sþ E,

ÛS;EðtÞ ¼ exp½�i�ðtÞð�̂þ�̂ðEÞ� þ �̂��̂
ðEÞ
þ Þ�; (9)

where �̂� and �̂ðEÞ
� are raising and lowering operators

acting, respectively, on the system and environment qubits,

and �ðtÞ ¼ arccos
ffiffiffiffiffiffiffiffiffi
PðtÞp

.
Setting ûEðtÞ as an identity operator and inserting the

variance of Ĥ S;EðtÞ, obtained from the unitary operator (9)

via definition (5), into (6), it is straightforward to show that
� is bounded by

�� � 2 lnsecðD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�̂þ�̂�i

q
Þ: (10)

Notice that, for the above process, the distance of the
evolved state from the initial state can reach at mostffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�̂þ�̂�i
p

�=2. Bound (10) saturates either for S initially
in the ground state (h�̂þ�̂�i ¼ 0), when the system does
not evolve at all, or for S initially in the excited state
(h�̂þ�̂�i ¼ 1), meaning that we have already chosen the
purified evolution that yields CQðtÞ ¼ F QðtÞ for these

situations. Furthermore, the fact that the bound is saturated
implies that the amplitude-damping channel connects the
states j1i and j0i along a geodesic path, which includes
mixed states. This remains valid for any monotonically
decreasing PðtÞ, with Pð0Þ ¼ 1, since, under this condition,
changing the form of �ðtÞ in (9) corresponds to a mere
rescaling of the time parameter, which does not change the
path in state space followed by a given initial state.

Markovian dephasing.—System S is again a single
qubit whose nonunitary evolution is described by a map
that makes use, as before, of an ancilla qubit starting in
state j0iE,
j0ij0iE ! e�i!0t=2½ ffiffiffiffiffiffiffiffiffi

PðtÞp j0ij0iE þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PðtÞp j0ij1iE�;

j1ij0iE ! ei!0t=2½ ffiffiffiffiffiffiffiffiffi
PðtÞp j1ij0iE � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� PðtÞp j1ij1iE�; (11)

where @!0 is the energy difference between the qubit
levels, PðtÞ :¼ ð1þ e��tÞ=2, and � is the phase-decay
constant. The corresponding evolution operator is

ÛS;EðtÞ ¼ e�i!0tẐ=2e�i arccos
ffiffiffiffiffiffiffiffiffi
Pð�tÞ

p
ẐŶðEÞ

; (12)

where Ẑ and ŶðEÞ are Pauli operators acting on the system
and on the environment qubits, respectively.

In order to find the best possible bound on � within our
approach, we now minimize CQðtÞ over the whole set of

Hermitian 2� 2 operators ĥEðtÞ. The minimum, written in

terms of the (constant) variance of Ẑ, is [46]

CoptQ ðtÞ ¼ h�Ẑ2i½!2
0e

�2�t þ �2ðe2�t � 1Þ�1�; (13)

which reduces to F QðtÞ for pure initial states, in which

case bound (6) reduces to (4). The above equation leads to
an implicit bound on �, given, in terms of elliptic integrals
of the second kind Eðy; kÞ, by

D � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Ẑ2i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p �
E

�
�

2
;

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
�

� E

�
arcsine���;

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
��

; (14)

with r :¼ !0=�. Equation (14) consistently guarantees the

eigenstates of Ẑ not to evolve. This bound is compared to
an exact calculation of D in Fig. 1, which shows that it
stays close to the exact result up to the first minimum of the
latter. Another feature of (14) is that it captures the fact that
the evolved and initial states never become orthogonal for r
under a critical value rcrit ’ 2:6 [46].
In the extreme cases � ! 0 and!0 ! 0, inequality (14)

yields simple analytical expressions for the bound on the
minimal time. For the former, the Mandelstam-Tamm
bound [2,6] is recovered, since the process becomes
unitary, and for the latter

�� � lnsec

�
2D=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Ẑ2i

q �
; (15)

which saturates for pure initial states with h�Ẑ2i ¼ 1. In
this situation, pure Markovian dephasing (!0 ! 0) links a
pure state to a fully mixed state through a geodesic path in
state space. Notice that, for the above process, the distance
of the evolved state from the initial state can reach at mostffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Ẑ2i

q
�=4.

Minimum evolution time and entanglement.—We now
investigate the effect of subsystem correlations on the
evolution speed of a compound system. We consider the
Markovian dephasing of an N-qubit system where each

FIG. 1 (color online). Relative difference between bound onD
for single-qubit dephasing (14) and the exact result, as a function
of the dimensionless time ��, for different values of h�Ẑ2i
(different initial states), with r ¼ 8.
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qubit interacts only with its own environment, as described
by (11), and compare how different initial-state correla-
tions (possibly entanglement) affect the evolution speed.

The evolution operator is ûEðtÞÛS;EðtÞ, with

ÛS;EðtÞ ¼
YN
i¼1

e�i!0tẐi=2e�i arccos
ffiffiffiffiffiffiffiffiffi
Pð�tÞ

p
ẐiŶ

ðEÞ
i ; (16)

where Ẑi (Ŷ
ðEÞ
i ) is a Pauli operator acting on the ith system

(environment) qubit. Since ĥEðtÞ now belongs to a 2N � 2N

space, the full minimization of CQðtÞ is rather cumbersome

for large values of N. Hinging on the symmetry of the
system, we resort instead to minimization over a three-
parameter family of Hermitian operators:

ĥEðtÞ ¼
XN
i¼1

½�ðtÞX̂ðEÞ
i þ �ðtÞŶðEÞ

i þ �ðtÞẐðEÞ
i �; (17)

where �ðtÞ, �ðtÞ, and �ðtÞ are optimization variables. We
get then [46]

CoptQ ðtÞ ¼ h�Ẑ2i
�

!2
0N

2

Nqðe2�t � 1Þ þ 1
þ �2N=q

e2�t � 1

�
; (18)

where q :¼ h�Ẑ2i=ð1� hẐi2Þ, Ẑ ¼ P
jẐj=N, and the

averages are taken in the initial state. We note that
0 � q � 1; for a separable state, q � 1=N (equality if
symmetrical on the N qubits). The values q ¼ 1 and

h�Ẑ2i ¼ 1, achievable for the entangled state ½j0 . . . 0i þ
ei	j1 . . . 1i�= ffiffiffi

2
p

, yield a lower bound valid for any initial
state. For q ¼ 1, the bound on the minimum evolution time
scales as �� 1=N throughout, a prediction validated by
exact calculations with the above entangled state; see
Supplemental Material [46].

For separable states, on the other hand, the lower bound

goes from a �� 1=
ffiffiffiffi
N

p
dependence for �

ffiffiffiffi
N

p � !0 to

�1=N for �
ffiffiffiffi
N

p 	 !0, as shown in Fig. 2. This transition
to faster behavior can be corroborated via direct calcula-
tions on symmetric, separable states [46].

This is a striking result, clearly distinct from the one
corresponding to unitary evolution. It has already been
seen in the literature [22–26] that, for unitary processes,
entanglement is a resource that enhances the speed
of evolution, so that the separation time improves from

a �� 1=
ffiffiffiffi
N

p
scaling (separable, slow state) to �� 1=N

(entangled, fast state). However, for the nonunitary evolu-
tion considered here, the minimum evolution time for

separable states, while scaling with 1=
ffiffiffiffi
N

p
for small N,

eventually scales as 1=N for �
ffiffiffiffi
N

p 	 !0, no matter how
small the dephasing rate. Under this condition, the evolu-
tion speeds of separable and entangled states scale in the
same way with respect to the number of qubits.

Conclusion.—We have derived an attainable lower
bound for the minimal evolution time of dynamical sys-
tems through a geometrical approach. This bound applies

to both unitary and nonunitary processes, and is obtained
by comparing the actual path followed by the system in
state space with the distance between the initial and final
states along a geodesic path, defined by a metric that is
expressed in terms of the Bures fidelity. Whenever the
evolution between two states is along this geodesic, the
bound is tight. Furthermore, it encompasses several special
cases discussed in the literature, including unitary evolu-
tions and mixed initial states.
This bound, expressed by Eq. (4), yields the

proper speed limit for general physical processes and
reduces, for unitary processes with time-independent
Hamiltonians, to theMandelstam-Tamm bound. This result
invalidates claims that there is no general bound valid
for all possible (unitary and nonunitary) quantum evolu-
tions [40]. It is important to note that our general bound
depends on the quantum Fisher information of the system,
rather than the initial variance of the Hamiltonian of the
system alone.
For situations when the general bound is too hard to

evaluate, we have introduced a more tractable bound,
based on a purification procedure that leads to attainable
upper bounds for the quantum Fisher information.
The usefulness of this bound is exemplified by consid-

ering typical nonunitary quantum channels. For the ampli-
tude channel, it leads to a tight bound, which evidences that
the evolution between the initial and final orthogonal pure
states is along a geodesic path though mixed states. For a
dephasing channel, it yields very good lower bounds for
the minimal evolution time between two nonorthogonal
states. For N-qubit dephasing, the evolution speed-up due
to entanglement of its subsystems, previously demon-
strated for unitary evolution, is shown to hold, in the
nonunitary case, also for separable states.

100 104 106 108
N

10 5

0.001

0.1

r 400

r 8

FIG. 2 (color online). Lower bound (solid curves) on time for

separable, symmetric state with h�Ẑ2i ¼ 1 to reachD ’ 94% of
the maximal distance (FB ¼ 1%), measured in dimensionless
units �� as a function of number of qubits N, calculated
numerically from (18). Results from exact calculations [46]
are plotted for comparison (dashed curves). For the black
(blue) curves, r ¼ 8, for the light gray (green) curves,
r ¼ 400; the asymptotes are proportional to 1=N and 1=

ffiffiffiffi
N

p
.
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Our general result allows the estimation of the impact of
the environment on the speed of quantum computation and
information processing. It is also relevant for the estima-
tion of thermalization and decoherence times.

The authors acknowledge the support of the
Brazilian agencies CNPq, CAPES, FAPERJ, and the
National Institute of Science and Technology for
Quantum Information.

Note added.—After we submitted this paper, we noted
the subsequent work [52], also proposing bounds for non-
unitary processes, which lead to simple calculations in
some situations, but are not saturable and do not recover
the results for unitary evolutions.
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