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A two-dimensional (2D) solid lacks long-range positional order and is diffusive by means of the

cooperative motion of particles. We find from molecular dynamics simulations of hard discs that 2D

colloids in solid and hexatic phases show seemingly Fickian but strongly heterogeneous dynamics.

Beyond translational relaxation time, the mean-square displacement is linear with time, t, implying that

discs would undergo Brownian diffusion and the self-part of the van Hove correlation function [Gsðr; tÞ]
might be Gaussian. But dynamics is still heterogeneous and Gsðr; tÞ is exponential at large r and

oscillatory with multiple peaks at intermediate length. We attribute the existence of several such peaks

to the observation that there are several clusters of discs with discretized mobility. The cluster of

marginally mobile discs grows with time and begins to percolate around translational relaxation time

while clusters of fast discs emerge in the middle of the marginally mobile cluster.
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Dynamics in supercooled liquids [1–3], gels [4], and
porous materials [5] is complex and depends on both
time and length scales. Three well-defined regimes of
dynamics have been proposed based on simulations and
experiments [6,7]. At short time and length scales, a bal-
listic motion is a dominant mechanism for diffusion. At
very large spatiotemporal scales beyond translational re-
laxation time (��), the distribution of the particle displace-
ment [the self-part of the van Hove correlation function,
Gsðr; tÞ] is Gaussian and the dynamics is Fickian; i.e., the
mean-square displacement (MSD) is linear with time t. At
an intermediate scale, particles may show subdiffusive
behavior with MSD� tb and b < 1. Gsðr; tÞ is not
Gaussian and often divides into two parts that fit well
with a Gaussian function for small r and an exponen-
tial function for large r, respectively [8]. And Pðr; tÞ
[� 2�rGsðr; tÞ] often shows the second peak due to
mobile particles that undergo hopping motions [9,10]. It
has been supposed for decades that such a non-Gaussian
Gsðr; tÞ would result in a non-Fickian diffusion at corre-
sponding time scales. However, recent studies revealed that
Gsðr; tÞ could be exponential instead of being Gaussian
while Fickian diffusion is still observed with MSD� t
[8,9,11]. In such cases, intermediate and large spatiotem-
poral scales are not always separated sharply; for example,
Wang et al. showed that colloid beads on phospholipid
bilayer tubes or in entangled actin suspensions entered the
regime of Fickian diffusion while Gsðr; tÞ is non-Gaussian
with an exponential tail at large r [11]. They suggested that
Fickian diffusion with such a non-Gaussian distribution
could be observed in various complex physicochemical
and socioeconomic systems.

In this Letter, we report an important case of two-
dimensional (2D) colloids where dynamics becomes

Fickian soon after ��, even though Gsðr; tÞ at intermediate
length is neither Gaussian nor exponential but has several
peaks for t � 12��. We show that even in a simple system
of 2D colloids the separation of intermediate and large
spatiotemporal scales is unclear even after more than an
order of magnitude times ��. This implies that 2D colloids
in solid and hexatic phases undergo exceptionally corre-
lated and collective motions. We also find that in a liquid
phase, a caging time (�c), during which a particle is in a
cage of neighbor particles before it escapes, is smaller than
a noncaging time (�nc) that a particle has to wait before a
cage forms to trap the particle. Near freezing transition,
�c � �nc. Cage formation and hopping motion are sensi-
tive to the thermodynamic phase transition.
2D solids might look as if they are simpler than

3D systems. However, due to the lack of a thermodynami-
cally stable crystal and a long-range positional order in a
solid phase [12], their dynamics is quite complex as well.
According to the celebrated Kosterlitz-Thouless-Halperin-
Nelson-Young theory, 2D solids would melt via an inter-
mediate phase called a hexatic phase that does not exist in
three-dimensional solids [13–15]. This has drawn great
attention regarding the existence of the hexatic phase and
the nature of transitions among solid, hexatic and liquid
phases. A recent simulation study by Bernard and Krauth
showed that the hexatic-to-solid transition was continuous
and the hexatic-to-liquid transition was a first order phase
transition [16]. There were relatively few studies on the 2D
colloid dynamics near the melting transition [17]. Zangi
and Rice found from a simulation study for a quasi-two-
dimensional liquid that dynamics became strongly hetero-
geneous and the cooperative motions of particles were
generated by instantaneous normal mode vibrations [18].
And dynamic criteria were introduced to identify 2D
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melting transitions including a modified Lindemann pa-
rameter in 2D and the bond-angular correlation functions
[19,20].

We model 2D colloids as hard discs of diameter �
that is the unit of length in this study. Initial configurations
are obtained by placing discs in a square lattice randomly
without any overlap between discs. The dimension L
of a simulation cell is varied from 50 to 100 and periodic
boundary conditions are applied in all directions. Initial
configurations are equilibrated by performing discontinu-
ous molecular dynamics (DMD) simulations. The
mean-square displacement h�r2ðtÞi ¼ hj~rðtÞ � ~rð0Þj2i and
the self-part of the van Hove correlation functionGsðr;tÞ¼
h�f ~r�½~rðtÞ� ~rð0Þ�gi are estimated using equilibrated con-
figurations from DMD simulations [6]. Here, h� � �i denotes
an ensemble average and ~rðtÞ is the position vector of a
disc at time t. We also monitor the self-part of the inter-

mediate scattering function Fsðk; tÞ ¼ hexpfi ~k � ½ ~rðtÞ �
~rð0Þ�gi and a 2D non-Gaussian parameter, �2ðtÞ �
1=2h�r4ðtÞi=h�r2ðtÞi2 � 1. Fsðk; tÞ is the spatial Fourier
transform of Gsðr; tÞ and provides information on spatio-
temporal correlations of particles.

The area fraction of hard discs (� ¼ ��2N
4L2 ) ranges from

0.66 to 0.76, which covers liquid, hexatic and solid phases.
N denotes the number of discs in the system. According to
Bernard and Krauth, the hexatic-to-solid phase transition
occurs at � ¼ 0:720, a single-phase hexatic regime exists
for 0:716<�< 0:720, and liquid and hexatic phases
coexist for 0:7<�< 0:716 [16]. Because of our relatively

small system size, it is difficult to pinpoint exact phase
boundaries, but we identify all three phases. We calculate
bond order correlation functions and find that its suscepti-
bility diverges at � ¼ 0:704, which indicates the freezing
transition of 2D liquids [21,22]. Beyond � ¼ 0:717 the
bond order correlation function starts showing a long range
orientational order, which is a signature of the hexatic-to-
solid phase transition. In order to confirm phase behaviors,
we also investigate pair correlation functions and the snap-
shots of discs assigned with local orientation vectors
[16,20,23].
Dynamics becomes heterogeneous in hexatic and solid

phases. At short time scales, particles diffuse via ballistic
motions with few collisions. Mean-square displacements
(h�r2ðtÞi) overlap well with one another and scale as t2

[Fig. 1(a)]. At long time scales, particles enter the Fickian
regime even in a solid phase with h�r2ðtÞi � t because
there is no long-range positional order in 2D solids. At
intermediate scales in hexatic and solid phases, h�r2ðtÞi
shows a subdiffusive behavior, i.e., h�r2ðtÞi � tb with
b < 1. In a solid phase for �> 0:72, even a plateau
appears in h�r2ðtÞi. The intermediate regime becomes
longer in time as � increases.
The 2D non-Gaussian parameter �2ðtÞ, an indicator of

the dynamic heterogeneity, shows clearly that dynamics is
heterogeneous at intermediate scales in hexatic and solid
phases [Fig. 1(b)]. �2ðtÞ � 0 in a liquid phase, but �2ðtÞ
increases with �. �ng, the time at which �2ðtÞ reaches a
maximum and dynamics is the most heterogeneous,

FIG. 1 (color). (a) Mean-square displacements [h�r2ðtÞi], (b) a 2D non-Gaussian parameter [�2ðtÞ], (c) the self part of the
intermediate scattering function [Fsðk; tÞ] with k ¼ 6, and (d) the translational relaxation time (��). In Fig. 1, �c and �ng denote

the caging time and the time at �2ðtÞ is maximum, respectively.
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increases monotonically with �. As shown in Fig. 1(a),
around �ng discs leave an intermediate regime for a Fickian

regime.
Subdiffusive dynamic behaviors in hexatic and solid

phases are reflected well in Fsðk; tÞ [Fig. 1(c)]. In hexatic
and solid phases, Fsðk; tÞ is well fitted to a stretched
exponential function called the Kohlrausch-Williams-
Watts function, i.e., Fsðk; tÞ � expfð�t=��Þ�g with 0<
� � 1 [7]. As � increases, Fsðk; tÞ decays more slowly
with a plateau appearing and its height rising. An increase
in the plateau height was also observed for a sol-gel
transition and could be attributed to the structural changes
[4]. The translational relaxation time �� is determined
using a relation Fsðk ¼ 6; t ¼ ��Þ ¼ e�1. As depicted in
Fig. 1(d), �� does not change much in a liquid phase but
increases sharply in a narrow region of a hexatic phase.

h�r2ðtÞi and Fsðk; tÞ indicate that systems should enter a
Fickian regime soon after �� (or �ng). This implies that at

long time scales, spatiotemporal correlations of particles
would be lost and the particle displacement would become
Gaussian, which is, however, not the case in the hexatic
and solid phases of 2D colloids. As depicted in Figs. 2(b)
and 2(d), the self-part of the van Hove correlation function
Gsðr; tÞ is not Gaussian and Pðr; tÞ [¼ 2�rGsðr; tÞ] shows
several peaks. For � ¼ 0:717 h�r2ðtÞi � t for t � 100 and
Fsðk ¼ 6; tÞ decays most thoroughly at t ¼ 1000. But
Gsðr; tÞ is still not Gaussian until t ¼ 1990 even with six
peaks in Pðr; tÞ. Note that t ¼ 1990 corresponds 12��.
Non-Gaussian Gsðr; tÞ with several peaks persists even
for t ¼ 12�� while h�r2ðtÞi enters the Fickian regime

and Fsðk; tÞ decays at t > ��. Therefore, this 2D colloid
near the hexatic-to-solid transition is a clear example that
non-Gaussian particle displacements still result in seem-
ingly Fickian dynamics. For � ¼ 0:713 in a hexatic phase
[Fig. 2(a)], peaks in Pðr; tÞ disappear after t ¼ 1000. Even
though Pðr; tÞ does not have peaks at t ¼ 1990, Gsðr; tÞ fits
to a Gaussian function only at small r and fits to exponen-
tial functions at large r. The exponential distribution of
particle displacement was also observed in glasses, gels,
and entangled actin suspensions [4,11,24].
The peaks in Pðr; tÞ are located around the integral

multiples of the disc diameter, which implies that discs
should diffuse via stringlike collective hopping motions
[18]. Figure 2(c) depicts a representative trajectory of a
disc for � ¼ 0:717. The disc undergoes almost 5 times the
discretized hopping motions in 6��. Zangi and Rice sug-
gested that the collective motion should be generated by
superpositions of instantaneous normal mode vibrations
and their lifetimes should increase with � [18,25,26].
The existence of the multiple peaks in Pðr; tÞ at inter-

mediate length can be understood by looking at how clus-
ters of mobile particles form and grow. Figure 3 shows
simulation snapshots of a trajectory for � ¼ 0:717 at four
particular times. A color code is assigned to each disc
according to a maximum displacement [�iðt	Þ] of the
disc in a given time, i.e., �iðt	Þ ¼ maxðj~rðt2Þ � ~rðt1ÞjÞ
for t0 � t1 < t2 � t0 þ t	. For example, yellow discs
travel up to a discretized distance of 5� during a given
time. And grey discs rattle around their positions, traveling
less than 1�. Two discs are determined to be connected if

FIG. 2 (color). 2�rGsðr; tÞ for (a) � ¼ 0:713 and (b) � ¼ 0:717. (c) A representative trajectory of a disc for � ¼ 0:717 that
undergoes hopping motions 5 times in 6��. Different colors indicate different times divided into 6 ��’s. (d) Gsðr; tÞ for � ¼ 0:717.
Dashed lines are fits to exponential functions.
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their colors are the same and they are the nearest neighbor
of each other. A cluster is defined as a set of discs that are
connected via at least one path. Therefore, discs in a cluster
possess almost the same mobility at a given time and
diffuse collectively.

At t ¼ ��=4 [Fig. 3(a)], most discs travel less than �.
However, there are four brown clusters of marginally
mobile discs that travel more than � but less than 2�.
When t ¼ ��=2 [Fig. 3(b)], the four brown clusters grow.
New orange or red clusters of discs with higher mobility,
which travel more than 2�, emerge in the middle of a
brown cluster. The new cluster with higher mobility is
more or less enclosed with a large cluster with lower
mobility. For t ¼ ��, the brown clusters begin to percolate

a simulation cell while more mobile but smaller clusters
keep growing. As depicted in Fig. 3(d), new faster (yellow
or green) clusters keep emerging in the middle of the
original slower clusters. Two clusters of green discs that
travel even up to 6� appear. And layers of clusters of
discretized mobility are observed clearly. Each cluster
accounts for the peak of Pðr; tÞ. Some discs diffuse through
a percolating path of mobile clusters. However, many other
grey discs are still frozen at the place where those discs
were located initially at t ¼ 0. Therefore, dynamics should
be spatially heterogeneous even at t > ��.
The cluster size grows with time as depicted in Fig. 4(a).

The cluster size (
ffiffiffiffiffiffiffi

NC

p
) is defined as the square-root of the

number of all discs surrounded by the largest brown cluster

FIG. 3 (color). Snapshots of a representative trajectory for � ¼ 0:717 and 4 different times (a) t ¼ ��=4, (b) ��=2, (c) ��, and
(d) 2��. The color code of discs is determined based on the maximum displacement of each disc in a given time.

FIG. 4. (a) The size of clusters (
ffiffiffiffiffiffiffi

NC

p
) of mobile regions as a function of time and (b) caging time, �c and noncaging time, �nc as a

function of �.
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in a simulation cell [27,28]. After a certain time for a given
value of �,

ffiffiffiffiffiffiffi

NC

p
reaches a plateau because the largest

cluster begins to percolate and most discs in a simulation
cell belong to the cluster. For a smaller �, due to a faster
diffusion,

ffiffiffiffiffiffiffi

NC

p
reaches a plateau earlier.

Two characteristic times are calculated to investigate
hopping motions and the formation and the breakdown of
a cage that confine a disc. A cage is defined as follows. We
perform Voronoi tessellation and find a first shell of neigh-
bor discs around a particular disc. Then, if the center of the
disc is located within a triangle made of any pair of three
neighbor discs and all sides of the triangle is smaller than
2�, we decide that a cage forms and the disc is trapped
within the cage [20]. A caging time (�c) is an average time
taken for a disc to spend before hopping out of the cage.
A noncaging time (�nc) is defined as an average time for a
disc to wait before a cage forms and starts trapping the disc.

At small spatiotemporal scales, hopping motions are
quite sensitive to the thermodynamic phase transition of
2D colloids. �c and �nc are much smaller than ��, which
suggests that hopping motions do not occur every time
cages break down and form, but with much less chance.
This is because even though a cage breaks, a disc has to
translate in an appropriate direction at the moment in order
to escape the cage. In a liquid phase, �nc is larger than �c.
Therefore, a disc is less likely to be trapped in a cage. And
even though a cage forms and traps a disc, it would not take
a long time for the disc to escape. But in hexatic and solid
phases, �c is larger than �nc, which means that discs are
likely to be trapped in a cage. Plateaus of h�r2ðtÞi for discs
in solid phases are observed at the same time scales of �c
[Fig. 1(a)]. Because �c increases and �nc decreases with an
increase in �, they cross at a certain value of � near the
liquid-to-hexatic phase transition.

In summary, we perform DMD simulations to investi-
gate the dynamics of 2D colloids near melting transitions.
The mean-square displacement and the self-part of inter-
mediate scattering functions suggest that the dynamics
enters a Fickian regime around the translational relaxation
time. This often implies that the particle displacement
distribution might be Gaussian beyond the translational
relaxation time. We find, however, that near melting tran-
sition, the self-part [Gsðr; tÞ] of the van-Hove correlation
function is not Gaussian with oscillatory multiple peaks at
intermediate length for long times until 12��. Unlike in
gels and supercooled liquids, Gsðr; tÞ is neither Gaussian
nor exponential at intermediate values of r, but has several
peaks that persist for 12�� in solid phases. We illustrate
that such peaks appear because the mobility of dynamics
clusters is more or less discretized. At short spatiotemporal
scales, the formation and the breakdown of cages are
sensitive to the phase transition of 2D colloids. Caging
time (�c) increases and noncaging time (�nc) decreases
with an increase of �. They become equal to each other
around the liquid-to-hexatic phase transition.
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