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2Dipartimento di Fisica, Università di Firenze, via Sansone 1, 50019 Sesto Fiorentino Firenze, Italy
3Max Planck Institute for Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
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We demonstrate that the exact nonequilibrium steady state of the one-dimensional Heisenberg XXZ

spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product

ansatz for the nonequilibrium density matrix where the matrices satisfy a quadratic algebra. This algebra

turns out to be related to the quantum algebra Uq½SUð2Þ�. Coherent state techniques are introduced for the
exact solution of the isotropic Heisenberg chain with and without quantum boundary fields and Lindblad

terms that correspond to two different completely polarized boundary states. We show that this boundary

twist leads to nonvanishing stationary currents of all spin components. Our results suggest that the matrix

product ansatz can be extended to more general quantum systems kept far from equilibrium by Lindblad

boundary terms.
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The nonequilibrium behavior of open quantum systems
has become accessible through recent advances in artifi-
cially assembled nanomagnets consisting of just a few
atoms [1] or in the study of quasi-one-dimensional spin
chain materials like SrCuO2 where many transport charac-
teristics are measurable experimentally [2,3]. In particular,
it is desirable to understand the interplay between many-
body bulk properties (e.g., magnon excitations or magne-
tization currents in quantum spin systems) and local
pumping (applied to the boundary of a system) driving
the system constantly out of equilibrium. A good starting
point is provided by the anisotropic Heisenberg model [4]

H ¼ J
X
k

½�x
k�

x
kþ1 þ �y

k�
y
kþ1 þ�ð�z

k�
z
kþ1 � "0Þ�; (1)

of coupled spins. The pure quantum version of this model
is exactly solvable by the Bethe ansatz. Interestingly,
within linear response theory, i.e., close to equilibrium, it
was found that at a finite temperature a diffusive contribu-
tion to the Drudeweight appears [5–7], which is at variance
with the long-held belief that integrability protects the
ballistic nature of transport phenomena. Unfortunately,
the Bethe ansatz fails in the more relevant context of
open far-from-equilibrium systems where these questions
can be addressed directly in terms of the Lindblad master
equation [8]

d

dt
� ¼ �i½H;�� þDLð�Þ þDRð�Þ; (2)

for the reduced density matrix � associated to the chain
(here and below we set @ ¼ 1). The dissipative terms
DL;Rð�Þ ¼ DL;R�DL;Ry � 1=2f�;DL;RyDL;Rg with the
Lindblad operators DL;R acting locally at the open ends

of the quantum chain (see below) describe the coupling to
external reservoirs that drive a current through the system
and thus keep the system in a permanent nonequilibrium
steady state. Indeed, using dissipative dynamics for the
preparation of quantum states is becoming a promising
field of research [9,10].
Significant progress has been achieved very recently in

two remarkable papers by Prosen [11,12] who observed
that the exact stationary density matrix for the XXZ chain
with one specific pair of Lindblad boundary terms can be
constructed explicitly in the matrix product operator form
[13] by a matrix product ansatz (MPA) somewhat reminis-
cent of the matrix product ansatz of Derrida et al. [14] for
the stationary distribution of purely classical stochastic
dynamics. With an explicit representation of the matrix
algebra, Prosen was then able to compute analytically
various physical quantities of interest. However, in contrast
to Ref. [14], where the matrices satisfy a quadratic algebra,
the matrices of Refs. [11,12] satisfy a cubic algebra which
arises from a peculiar local cancellation mechanism
involving three neighboring sites in the quantum chain.
This feature is significant since, due to the lack of a general
representation theory for cubic algebras, this approach
does not lend itself easily to generalization to other open
quantum systems with other cubic algebras or even small
modifications of the original problem such as boundary
fields or other Lindblad terms for the XXZ chain which
would require a different representation. Indeed, the wide
applicability of the MPA of Ref. [14] derives from the fact
that many quadratic algebras (which include all Lie alge-
bras through their commutation relations) have explicitly
known representations, which is crucial for the exact com-
putation of physical observables [15].
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In this Letter, we show that exact nonequilibrium steady
states for open quantum systems can be obtained from a
matrix product ansatz which yields a quadratic algebra.
Specifically, we consider the Lindblad quantum XXZ chain
and show that the associated matrix algebra is related to the
bulk symmetry of the XXZ chain, which is the quantum
algebra Uq½SUð2Þ� with � ¼ ðqþ q�1Þ=2. A coherent

state representation makes it possible to consider
Lindblad operators that correspond to two different com-
pletely polarized boundary states, viz., in the (y, z) plane
on the left boundary

DL ¼
ffiffiffiffi
�

2

s
ð�x

1 þ i cos�L�
y
1 � i sin�L�

z
1Þ; (3)

and in the (x, z) plane on the right boundary with

DR ¼
ffiffiffiffi
�

2

s
ðcos�R�x

N � i�y
N þ sin�R�

z
NÞ: (4)

These Lindblad generators lead to local dissipative terms

whose stationary solutions, satisfying DLðRÞð�LðRÞÞ ¼ 0,
are respectively the pure states �L¼1=2ð1þ�z

uÞ¼
j"uih"u j and �R ¼ 1=2ð1� �z

vÞ ¼ j #vih#v j, where j "ui is
the eigenstate associated to the eigenvalue þ1 of �z

u ¼
sin�L�

y þ cos�L�
z, and j #vi is the eigenstate of �z

u ¼
� sin�R�

x þ cos�R�
z with eigenvalue �1. For computa-

tional convenience we have chosen equal left and right
amplitudes � in (3) and (4). By a judiciously chosen
similarity transformation, these amplitudes can be made
different [16].

Moreover, we allow for quantum boundary fields acting
on the directions of the local polarizations specified by (3)
and (4). Consequently, we add to the Hamiltonian (1) the

contribution ~fL � ~� ¼ fL�z
u for the left end of the chain

and ~fR � ~� ¼ fR�z
v coming from the right-end boundary

field. For convenience, we choose J ¼ 1=2 and "0 ¼ 1 so
that H ¼ P

N�1
k¼1 hk;kþ1 þ gL1 þ gRN with the 4� 4 matrix

h ¼ 1
2 ½�x � �x þ �y � �y þ �ð�z � �z � 1Þ� for the

nearest neighbor bulk interaction and the 2� 2 matrices
gL ¼ fL�z

u and gR ¼ fR�z
v for the boundary fields. The

subscript indicates on which sites of the chain the quantum
operators g and h act nontrivially. We write the stationary
density matrix satisfying

i½H;�� ¼ DLð�Þ þDRð�Þ (5)

in the standard form � ¼ SSy=TrðSSyÞ.
Our starting point for solving (5) is a matrix product

ansatz

S ¼ h�j��Njc i; (6)

which we augment by auxiliary matrices � such that the
local divergence condition

½h;� ��� ¼ � ���� �� (7)

is satisfied. In this construction

� ¼ A1 Aþ
A� A2

 !
; � ¼ E1 Eþ

E� E2

 !
; (8)

are 2� 2matrices whose entries Aa, Ea are noncommuting
matrices that act in a spaceAwith inner product h�j�i, and
h�j, jc i are vectors inA. In terms of Pauli matrices�� ¼
1=2ð�x � i�yÞ,�z, and the two-dimensional unit matrix 1,
one can conveniently write � ¼ A01þ ~A � ~� with A0 ¼
1=2ðA1 þ A2Þ, Az ¼ 1=2ðA1 � A2Þ, Ax ¼ 1=2ðAþ þ A�Þ,
Ay ¼ i=2ðAþ � A�Þ. In our construction the local diver-

gence condition leads to a set of 16 quadratic relations for
the eight matrices Aa, Ea and the problem to be attacked is
the construction of matrices which satisfy these relations.
Remarkably, all 16 equations (7) can be solved in terms

of only three independent matrices A�, Q with QQ�1 ¼
Q�1Q ¼ 1 by choosing the auxiliary matrices E� ¼ 0,
E1 ¼ ðq� q�1ÞðbQ� cQ�1Þ=2, E2 ¼ �ðq� q�1Þð �bQ�
�cQ�1Þ=2, setting

A1 ¼ bQþ cQ�1; A2 ¼ �bQþ �cQ�1; (9)

and requiring

½Aþ; A�� ¼ �ðq� q�1Þðb �bQ2 � c �cQ�2Þ; (10)

QA� ¼ q�1A�Q: (11)

The constants b, c, �b, �c are arbitrary. Choosing the
parametrization

b ¼ �

q� q�1

�

�
; �b ¼ �

q� q�1

1

��
; (12)

c ¼ � �

q� q�1
��; �c ¼ � �

q� q�1

�

�
; (13)

and defining

A� ¼: i�S�; Q ¼: �qSz (14)

then leads to

½Sþ; S�� ¼ q2Sz � q�2Sz

q� q�1
; (15)

qSzS� ¼ q�1S�qSz : (16)

These are the defining relations of Uq½SUð2Þ�, the

q-deformed universal enveloping algebra of the Lie alge-
bra SU(2), which is the non-Abelian symmetry of the bulk
Hamiltonian (1) [17].
After deriving a matrix algebra from the bulk interac-

tions the second step is the explicit construction of such
matrices and of the vectors hVj and jWi using the boundary
interactions. For the present case we note that the repre-
sentation theory of Uq½SUð2Þ� is well-understood and

analogous to that of SU(2), except when q is a root of
unity, where some special features arise [17]. In particular,
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with the definition ½x�q :¼ qx�q�x

q�q�1 we have the irreducible

representation (irrep)

Sz ¼
X1
k¼0

ðp� kÞjkihkj;

Sþ ¼ X1
k¼0

½kþ 1�qjkihkþ 1j;

S� ¼ X1
k¼0

½2p� k�qjkþ 1ihkj;

where p is an arbitrary complex parameter. This irrep is
infinite dimensional, except when 2p 2 N). The bra’s and
ket’s form an orthogonal basis of A ¼ CN with inner
product hkjk0i ¼ 	k;k0 . Relations (9) and (14) then provide

a representation of the matrices Aa.
In order to satisfy the boundary conditions involving

the quantum boundary fields and the Lindblad dissipa-
tors, we further define � ¼ ½g;�� and the tensor prod-
ucts �k¼��k�1�����N�k, �1 ¼ � ���N�1, and
�N ¼ ��N�1 ��. The local divergence condition
implies ½H;��N�¼�L

1 þ�1þ�R
N��N . The stationary

Lindblad equation (5) can thus be split into two equations

DLðSSyÞ ¼ ið�L
1 þ�1ÞSy � iSð�Ly

1 þ�y
1 Þ; (17)

DRðSSyÞ ¼ ið�R
N ��NÞSy � iSð�Ry

N ��y
NÞ; (18)

for each boundary. Using the decomposition S ¼
h�j½1A0 þ �zAz þ Aþ�þ þ A���Þ� ���N�1jc i for
the first equation and S ¼ h�j��N�1 � ½A01þ Az�

z þ
Aþ�þ þ A����jc i for the second equation and factoring
out the term containing��N�1 yields two sets of equations
for the action of the matrices Aa on the vectors h�j and jc i,
respectively. In this Letter we outline this program for the
isotropic chain � ¼ 1. The construction for � � 1 is con-
ceptually similar, but technically more involved and will be
presented in a more detailed paper [18].

For taking the isotropic limit q ! 1 we choose the
normalization factors � ¼ � ¼ 1 and set � ¼ � in (12)
and (13) and arrive at

� ¼ �Sz iSþ
iS� ��1Sz

 !
; � ¼ � 0

0 ���1

 !
: (19)

The quadratic relations for the quantum algebra turn
into the usual commutation relations ½Sþ; S�� ¼ 2Sz,
½Sz; S�� ¼ �S� for SU(2). The irreducible representation
(17) turns into an irrep of SU(2) by observing that ½x�1 ¼ x.
Since the Lindblad dissipators do not generate terms pro-
portional to the unit matrix, we cancel these terms that
appear on the rhs of (5) by setting � ¼ i which leads to

A0 ¼ 0 and � ¼ i ~S � ~�, where ~S ¼ ðSþþS�
2 ; i Sþ�S�

2 ; SzÞ
and ~� ¼ ð�x;�y; �zÞ, or in terms of the �� the form
� ¼ iðSz�z þ Sþ�þ þ S���Þ.

The key step in solving the boundary equations is the
introduction of coherent states

h�j :¼ X1
n¼0

�n

n!
h0jðSþÞn ¼

X1
n¼0

�njhnj; (20)

jc i :¼ X1
n¼0

c n

n!
ðS�Þnj0i ¼

X1
n¼0

c n
2p

n

 !
jni: (21)

Using the commutation relations of SU(2), one finds

h�jSz ¼ h�jðp��SþÞ;
h�jS� ¼ �h�jð2p��SþÞ;

(22)

and

Szjc i ¼ ðp� c S�Þjc i;
Sþjc i ¼ c ð2p� c S�Þjc i:

(23)

The left boundary equations can now be solved by
noting that the Lindblad operator (3) can be obtained
from a complete polarization along the z axis by the unitary

transformation U ¼ eið�L=2Þ�x
on site 1 of the chain which

rotates the z axis into a new direction u. After this trans-
formation the leftmost matrix� in the tensor product��N
reads in the new basis

�ð�LÞ ¼ i½Szð�LÞ�z
u þ Sþð�LÞ�þ

u þ S�ð�LÞ��
u � (24)

with the new components

Szð�LÞ ¼ Sz cos�L þ i sin�L
Sþ � S�

2
;

Sþð�LÞ ¼ Sþ þ S�
2

þ cos�L
Sþ � S�

2
þ iSz sin�L;

S�ð�LÞ ¼ Sþ þ S�
2

� cos�L
Sþ � S�

2
� iSz sin�L:

(25)

In order to solve the left boundary equation we need to
impose

h�jS�ð�LÞ ¼ 0; h�jSzð�LÞ ¼ ph�j: (26)

Using (22) these conditions are satisfied if the coherent
state parameter � is chosen to be

� ¼ i tanð�L=2Þ: (27)

In order to prove this result we point out (22) and (23)
can be used to express vectors of the form h�jðaþ bSz þ
cSþ þ dS�Þ that appear in the boundary equations just in
terms of, e.g., h�jða0 þ d0S�Þ, and similarly for the action
on ket vectors jc i. The choice (27) leads to

S ¼ h�j��Njc i ¼ ip�z
u � ~Sþ �þ

u �W; (28)

where ~S ¼ h�j��N�1jc i and W ¼ ih�jðSþ þ S�Þ�
��N�1jc i. Moreover,
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SSy ¼ jpj21 � ~SSy � ip��
u � ~SWy � ðipÞ��þ

u �W ~Sy

þ �þ
u �

�
u �WWy: (29)

Now, on the one hand we see that the action of the left
dissipator DL leads to

DLðSSyÞ ¼ 2�jpj2�z
u � ~S~Sy þ �ip��

u � ~SWy

þ �ðipÞ��þ
u �W ~Sy: (30)

On the other hand, the left contribution of the unitary part of
the Lindblad equation leads to

i½H; SSy� kLeft ¼ �½ipþ ðipÞ���z
u � ~S~Sy

� ��
u � ½1� 2ifLðipÞ�~SWy

� �þ
u � ½1þ 2ifLðipÞ��W ~Sy: (31)

Comparing the two contributions gives the solution for the
representation parameter

p ¼ i

�� 2ifL
: (32)

The right boundary is treated along the same lines. The
right-end state is polarized in the (x, z) plane in a direction
v generated by the rotation

U ¼ eið�R=2Þ�y
; (33)

where we take as reference the �z direction. Going
through similar steps as above we impose the cancellation

Sþð�RÞjc i ¼ 0: (34)

With (23) this yields to

c ¼ � tanð�R=2Þ: (35)

In order to fulfill the stationarity condition (18), together
with (23) one needs to impose fR ¼ �fL such that the
representation parameter takes the value given in (32).
Interestingly, this condition turns out to allow for the inclu-
sion of a Dzyaloshinsky-Moriya interaction in the XXZ
Hamiltonian [18] which is the key ingredient in the
Lagrange-multiplier approach of Ref. [19] to current-
carrying states of quantum spin systems.

In conclusion, the solution of the completely polarized
twisted case with a polarization on the left in the (y, z)
plane and in the right in the (x, z) plane is given by the
matrix product ansatz for S in the form (6) with coherent
state parameters (27) and (35) and representation parame-
ters (32). At �L ¼ �R ¼ 0 and vanishing boundary fields
fR ¼ fL ¼ 0 one recovers the untwisted solution [12]. For
the anisotropic case � � 1, and in absence of boundary
fields, the relation (32) will be substituted by 2� ¼ iðqp þ
q�pÞ=½p�q, see Ref. [18].

The model with a twist is fundamentally different from
the untwisted one, which can be seen by studying one- and
two-point functions in the steady state. Note that in the

isotropic model, all three spin projections �x
n, �

y
n, and �z

n

are locally conserved, i.e., d
dt �

�
n ¼ |̂�n�1;n � |̂�n;nþ1, where

|̂�n;nþ1 ¼ 2
P


;�"�
��


n�

�
nþ1 ("�
� being the Levi-Civita

symbol). This leads to three different steady state currents
j� ¼ h|̂�n;nþ1i for� ¼ x, y, z. In the untwisted model (�L ¼
�R ¼ 0), two out of three one-point correlations vanish in
the steady state, h�x

ni ¼ h�y
ni ¼ 0 for all n, corresponding

to trivial flat x- and y- magnetization profiles along the
chain. Also, two out of three spin currents are completely
suppressed in the untwisted setup jx ¼ jy ¼ 0. In a model
with a twist, neither of the one-point functions vanishes,
and all three spin currents jx, jy, jz are generically nonzero.
In order to see this, we note that in the usual untwisted

model with Lindblad operators being creation and annihila-
tion operators [11,12] the steady state is invariant under a
parity symmetry � ¼ U�U, where U ¼ ð�zÞ�N ¼ U�1

[20]. Any physical observable that changes sign under the
parity operation has to vanish in the steady state, e.g., h�x

ni¼
TrðU�x

nU�Þ¼�Trð�x
n�Þ¼�h�x

ni, from which h�x
ni ¼ 0

follows. In this way, one readily obtains h�x
ni ¼ h�y

ni ¼
jx ¼ jy ¼ 0.
In the isotropic model with a twist, the parity symmetry

is broken, but its place is taken by another symmetry,
which we specify here for twisting angles �R ¼ ��L ¼
�=2: It involves left-right reflection RðA � B � � � � �
CÞ ¼ ðC � � � � � �B � AÞR, global rotation in the XY
plane Urot ¼ diagð1; iÞ�N and �x ¼ ð�xÞ�N , and reads � ¼
V�Vy, where V ¼ �xUrotR [21]. It is straightforward to
check that neither of the set of observables h��

n i, j�,
changes sign under the V symmetry, and therefore they
are generically nonzero. The symmetry V does, however,
give rise to nontrivial relations between the observables,
e.g., jx ¼ �jy, h�z

ni ¼ �h�z
N�ni, etc.

The major novelty of our approach is the exact MPA
solution by a quadratic algebra which turns out to be the
symmetry algebra of the unitary evolution of the bulk part
of the Hamiltonian. Remarkably, this MPA solves the sta-
tionary Lindblad equation even though both the quantum
boundary fields and the Lindblad dissipators destroy this
symmetry. We expect that Lindblad equations for other
open boundary-driven many-body quantum systems with
a q-deformed non-Abelian bulk symmetry can be solved in
a similar fashion. Since representations of the correspond-
ing quantum algebras are known, exact results for observ-
ables become available. An open problem is the relationship
of theMPA to the integrability of the bulk Hamiltonian and,
hence, to the extension of the MPA approach to dynamical
observables. Work on eigenfunctions [22,23] and recent
exact results by Eisler for the density matrix with bulk
Lindblad terms [24] hint at this possibility.
V. P. thanks T. Prosen for pointing out that the model

with a �=2 twist is likely be MPA solvable, and acknowl-
edges the Dipartimento di Fisica e Astronomia, Università
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