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We study thermal and charge transport in a three-terminal setup consisting of one superconducting and

two ferromagnetic contacts. We predict that the simultaneous presence of spin filtering and of spin-

dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermo-

electric effects both in clean and in disordered systems. The symmetries of thermal and electric transport

coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results

show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three-terminal

quantum coherent ferromagnet-superconductor heterostructure including a spin-dependent crossed

Andreev reflection and coherent electron transfer processes.
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Heterostructures of ferromagnets (F) and superconduc-
tors (S) are presently a subject of intense study since they
show interesting phenomena based on the singlet-triplet
conversion of pairing amplitudes at the interfaces and the
resulting spin-dependent proximity effect. Spectacular
examples are long-range triplet Josephson currents due
to inhomogeneous magnetic order [1] or due to the spin
dependence of the interface reflection and transmission
amplitudes [2] that were confirmed in a set of pivotal
experiments [3–6]. A multitude of coherence phenomena
is understood in terms of spin-dependent Andreev bound
states [2,7–17], intimately related to spin-mixing [18] and
spin-filtering effects at interfaces [19].

A three-terminal superconductor-ferromagnet proximity
system also allows us to access nonlocal effects. For ex-
ample, in Fig. 1, incoming electrons (current II) can be
reflected from the interface (IR) or enter the superconduc-
tor, where each builds a Cooper pair with another electron,
leaving a hole behind that is retroreflected (a so-called
Andreev reflection). These holes can be transmitted back
through the same interface (IAR) or reflected to the other
interface, where they are either transmitted directly as
holes (ICAR) or as electrons via the same conversion
process as at the other interface in reversed order (ICET)
(part of these electrons can also be reflected back to the first
interface, contributing to higher order processes). Nonlocal
transport has attracted considerable interest due to the
latter two processes, called crossed Andreev reflection
(CAR; an electron enters at one terminal, and a hole leaves
the other terminal, or vice versa) and coherent electron
transfer (CET, sometimes called ‘‘elastic cotunneling’’; an
electron enters one terminal, and an electron leaves the
other terminal, or the same for holes) [20–22]. These
processes test the internal structure of Cooper pairs and

lead to new interesting physics that can be and has been
tested experimentally [23–27].
In this Letter, we develop a theory for the hitherto less

explored nonlocal thermal transport in ferromagnet-
superconductor devices and show that a nonlocal version
of Onsager relations [28] holds in both the normal and
superconducting states. In the superconducting state, we
find a strongly enhanced local thermopower and a nonlocal
Seebeck effect. These effects do not require noncollinear
inhomogeneities in the ferromagnetic regions or at the
interfaces (a ubiquitous problem for creating triplet super-
currents [1,2,4–6,29]). Thus, our results should be readily
observable in experiments and offer a way to access the
microscopic spin-dependent parameters.
In linear response, the transport coefficients relating

charge (energy) currents Iq (I") to an applied voltage
�Vj ¼ Vj � VS or temperature difference �Tj ¼
Tj � TS (throughout this Letter, j 2 f1; 2g labels the

FIG. 1 (color online). (a) The device consisting of two ferro-
magnets (regions to the left and right in blue) and a supercon-
ductor (the green region in the center). Trajectories for electrons
(black) and holes (red) illustrate possible transport processes in
the ballistic case, as discussed in the text (white arrows denote
the spin). (b) Equivalent circuit diagram of the setup shown in (a)
for the diffusive limit including the coherence leakage [41]. The
interface parameters are discussed in detail beneath Eq. (3).
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ferromagnet-superconductor contacts and q ¼ �jej is the
electronic charge) of our three-terminal system are
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This generalized conduction matrix L̂ contains local 2� 2
blocks in the diagonal and nonlocal 2� 2 blocks in the
off diagonal. The local and nonlocal thermoelectric

coefficients LqT
ij in Eq. (1) give rise to large thermoelectric

effects in the superconducting state, as we will show below.
In contrast, in the normal state, these coefficients are typi-
cally proportional to the asymmetry of the density of states
around the chemical potential, which is orders ofmagnitude
smaller. Microscopically, spin-dependent scattering phases
at a ferromagnetic contact produce an asymmetry, equal in
magnitude and opposite in sign for the two spin species, in
the superconducting spectrum of quasiparticles emerging
from the contact. Spin filtering, which weights the spin
directions differently, can resolve these asymmetric com-
ponents of the spectrum. Both effects vanish for spin-
independent systems. Consequently, this situation is not
comparable to the thermoelectric effects related to the
supercurrents discussed in the context of normal-metal–
superconductor Andreev interferometers [30–33]. The ef-
fects we present persist also in the absence of a supercurrent
emerging from the superconducting terminal.

We find that the matrix in Eq. (1) (even for noncollinear

magnetization configurations) is symmetric, L̂ ¼ L̂T , simi-
lar to the well-known Onsager symmetries [28], however,
for a nonlocal setup that contains ferromagnetic leads and
includes supercurrents in the superconducting terminal as
well as crossed Andreev reflection and elastic cotunneling
processes between the contacts.

We begin our theoretical analysis with the description
of the interfaces between the superconductor and the
ferromagnets. Each conduction channel n between a
superconductor (S) and a ferromagnet (F) (with homoge-
neous magnetization throughout the interface region) is
described by a scattering matrix

Ŝn� ¼ rn�e
i’S

n� tn�e
i’SF

n�

tn�e
i’FS

n� �rn�e
i’F

n�

 !
; (2)

where � 2 f"; #g and unitarity requires r2n� þ t2n� ¼ 1 and
’SF

n� þ ’FS
n� ¼ ’S

n� þ ’F
n� modulo 2�. This leads, for ex-

ample, to spin-dependent conductances (spin filtering)
characterized by a polarization P n¼ðt2n" �t2n# Þ=ðt2n" þt2n# Þ
and a probability for transmission, T n¼ðt2n"þt2n#Þ=2�
ð1þjP njÞ�1. Concerning the scattering phases, transport
coefficients only depend on the phase shift between the
reflections of spin-up and spin-down electrons on the
superconducting sides of the contact, �’n ¼ ’S

n" � ’S
n# ,

called a spin-mixing angle. Some of the most striking
consequences of the spin-dependent scattering phases are
triplet pairing [2,34] or subgap resonances in the noise
spectral density [11,35]. Finally, the combination of both
spin-dependent parameters P n and �’n leads to thermo-
electric effects. We use spin-dependent boundary condi-
tions (SDBCs) [2,7,12,36–38] for quasiclassical Green
functions in the setups shown in Fig. 1.
Analogously to the spin-independent theory [39–42], the

system properties in the dirty limit (i.e., the elastic mean
free path is much shorter than the superconducting coher-
ence length) are fully described by the isotropic matrix

Green functions �Gc of the contact region [see Fig. 1(b)] and
�Gj ( �GS) for the ferromagnets (superconductor) that are

8� 8 matrices in Keldysh � Nambu � spin space. �Gc is
determined through a finite element approach, governed
by a conservation law for matrix currents [41] (see the

Supplemental Material for details [43]):
P

j
�I j;c þ �IS;c þ

�ILeak ¼ 0 with the normalization condition �G2
c ¼ 1. The

leakage current �ILeak describes the decoherence of the
superconducting order parameter due to a finite diffusion
time in the central region (defining the inverse of the
Thouless energy "Th). The spin-dependent matrix currents
I j;c from contact j into the superconducting contact region

(denoted as c) are obtained from the SDBC. We introduce
the notation tn� ¼ tn þ �t0n for spin components of the
transmission quantized along a magnetization direction ~m.

Choosing the spinor basis �̂y ¼ ð�y
" ;�

y
# ;�#;��"Þ and

following the line in Ref. [37], we find to leading order in
tn, t

0
n, and �’n a compact form for the SDBC:

�I j;cð"Þ ¼ q2

h

X
n

½�tjn �Gjð"Þ�tjn � i�’jn ��j;
�Gcð"Þ�; (3)

with �tjn ¼ tjn þ t0jn ��j and ��j ¼ �1 � ��z � ð ~mj
~��Þ ( �� and ��

are Pauli matrices). The tjn and t0jn can be related to the

T jn and P jn via ðtjn þ t0jn ~mj
~��Þ2 ¼ T jnð1þ P jn ~mj

~��Þ.
Performing the sums over n, only a few parameters remain.
In terms of the conductance quantum Gq � q2=h, these

are Gj ¼ 2Gq

P
nT jn, G

MR
j ¼ Gq

P
nT jnP jn, and G�

j ¼
2Gq

P
n�’jn, as well as �Th � "ThGS=Gq. Here, GS is the

conductance between the contact region and the bulk

superconductor, fulfilling �IS;c ¼ GS

2 ½ �GS;
�Gc�. The above

procedure is correct for �’jn;T jn � 1, covering the full

range �1 � P jn � 1. The equations for �Gc are solved

numerically, and the density of states and the currents are
calculated as functions of the parameter set introduced
above, as described in the Supplemental Material [43].
In the clean limit (i.e., the elastic mean free path is much

longer than the superconducting coherence length), we
apply the theory developed in Refs. [10,12,44]. In this
case, the current density at one particular contact can be
decomposed into local (depending on the distribution func-
tion of the ferromagnet at the same contact) and nonlocal
(depending on the distribution function of the ferromagnet at
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the other contact) contributions: incoming (II), reflected (IR),
Andreev reflected (IAR), crossed Andreev reflected (ICAR),
and coherent electron transfer ICET (see Fig. 1). The total
current through contact j into the superconductor is given by

I�j ¼ I�j;I � I�j;R þ I�j;AR � I�j;CET þ I�j;CAR; (4)

with � 2 fq; "g and contact index j 2 f1; 2g. We consider
two contacts of diameter that are small compared to the
superconducting coherence length 	0 and to the intercontact
distance L. Then, quasiclassical trajectories connect the
two contacts, with contact i seen from contact j under
a solid angle ��j ¼ Az

i =L
2, where Az

i is the area of

contact i projected onto the plane normal to the line connect-
ing the two contacts (here, the z axis). The current through
contact j is proportional to Az

j, and its nonlocal part is

proportional to Az
1A

z
2=L

2, as is the nonlocal part of the

current through contact i. Nonlocal contributions also enter
IR and IAR; however, they are the only contributions to ICAR
and ICET. Only nonlocal contributions, via the trajectory
connecting the two contacts, give rise to thermopower and
the Seebeck effect in the ballistic limit.

We write nonlocal current contributions as

I�j ¼ �2p

��

��������pj!i

Az
1A

z
2

ð2�@Þ3L2

Z 1

�1
�½jjð"Þ þ ~jjð"Þ�d"; (5)

with ð�2p=��Þjp1!2
¼ ð�2p=��Þjp2!1

being the differen-

tial fraction of the Fermi surface of the superconductor
with Fermi momentum such that the corresponding Fermi
velocity ~vF connects the two contacts, per solid angle �.
With the deviations of the distribution functions from that
in the superconductor, for particles �fp and holes �fh, the

contributions to jj ¼ jj;I � jj;R þ jj;AR � jj;CET þ jj;CAR
are, e.g., for contact j ¼ 1, j1;Ið"Þ ¼ 2�f1;p,

j1;Rð"Þ ¼ 2jr1" � v1t
2
1"r1#e

i�’1
0
1j2�f1;p; (6)

j1;ARð"Þ ¼ ðt1"t1#Þ2jv1j2ðj
1j2 þ j
0j2Þ�f1;h; (7)

j1;CETð"Þ ¼ ðt1"t2"Þ2jv1u12j2ð1þ j
0j4r21#r22#Þ�f2;p; (8)

j1;CARð"Þ ¼ ðt1"t2#Þ2jv1u12j2j
0j2ðr22" þ r21#Þ�f2;h; (9)

with 
0ð"Þ ¼ ��=ð"þ i!Þ, !ð"Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � "2

p
, �jð"Þ ¼


0rj"rj#ei�’j , u12ð"Þ ¼ ½c� isð"þ �2�Þ=!��1, 
1ð"Þ ¼
u12½�2cþ isð�þ �2"Þ=!�, and v1ð"Þ ¼ ð1� 
1�1Þ�1,
with cð"Þ ¼ coshð!L=@vFÞ and sð"Þ ¼ sinhð!L=@vFÞ.
Finally, ~jjð"Þ in Eq. (5) is obtained by interchanging "$#
and �’j ! ��’j for both contacts in the expressions

above. The distribution functions are

�fj;pð"Þ ¼
q�Vj þ "�Tj=TS

4kBTScosh
2ð"=2kBTSÞ

¼ �fj;hð�"Þ: (10)

Equations (4)–(10) are valid for arbitrary transparencies
and spin polarizations. Nonlocal effects decay when L
exceeds the scale of the superconducting coherence length

(	0 ¼ @vF=kBTc in the clean limit). See the Supplemental
Material [43] for examples.
The temperature dependence of the superconducting

pair potential � is taken into account by solving self-
consistently the gap equation in weak coupling BCS theory
(with its zero temperature value denoted as �0).
As shown in the Supplemental Material [43], in ballistic

systems, only processes that involve the opposite contact

contribute to the local thermoelectric coefficients LqT
jj and

L"V
jj . The term I�j;AR does not contribute because j1;ARð�"Þ

cancels the corresponding term for ~j1;ARð"Þ in the expressions
for the thermoelectric coefficients [both have the same pre-
factor ðt1"t1#Þ2; i.e., spin filtering is not active here]. In con-

trast, the expression for I�j;R does not show such a cancellation

when contact 1 is spin polarized, due to the asymmetric
combination of transmission and reflection coefficients in
j1;Rð"Þ (i.e., spin filtering is active) and the presence of spin
mixing (�’1). It does, however, require in addition that
r2"r2#ei�’2 � 1 (which means the presence of a second con-

tact) in order for it to cause nonzero thermoelectric effects.
When the impurity mean free path or the dimension of the
superconducting terminal shrinks below 	0, direct backscat-
tering due to impurities or surfaces contributes and leads to a
local thermopower even in a two-terminal device.
As the mechanism behind the thermoelectric effects

can be understood from the density of states (DOS) in
the contact region, we discuss first this quantity. In the
dirty limit (see Fig. 2) forG� ¼ 0, the DOS displays peaks
at " ¼ � resulting from the superconducting leads and the
proximity induced minigap. The magnetization directions
are chosen parallel. Increasing G� simultaneously in both
terminals leads to a Zeeman splitting of the minigap in
spin-up and down parts and consequently breaks the sym-
metry of the spin-projected DOS (SDOS) around the Fermi
energy "F (see Fig. 2). Hence, we expect a nonvanishing
thermopower if a spin-filtering term GMR is present simul-
taneously. An equivalent discussion of the SDOS depend-
ing on the spin-mixing angle �’ for a ballistic system is
done in Ref. [13]. The subgap peaks there are much sharper

FIG. 2 (color online). Densityof statesD in the contact region for
G1 ¼ G2 ¼ 0:1GS, G

MR
1 ¼ GMR

2 ¼ 0:005GS (10% polarization),

and �Th � "ThGS=Gq ¼ 0:5�0 (with the Thouless energy "Th of

the contact region). (a) Total DOS depending on the spin-mixing
termG� for equal ferromagnets. TheG� term splits the pseudogap
into the different spin directions. (b) shows the asymmetry in the
SDOS for spin-down (the spin-up SDOS looks equal but mirrored
at the " ¼ 0 axis).
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compared to the washed-out peak in the dirty limit. This is
associated with the fact that only trajectories connecting
the two contacts contribute to the nonlocal transport, in
which case it is governed by a single length L. This is not
the case in diffusive structures, where quasiparticles take
random paths of various length between the contacts (and
back to the same contact). Nevertheless, both ways lead to
an asymmetry in the SDOS and consequently to the aston-
ishing prediction of giant thermoelectric effects for spin-
polarized interfaces.

We now turn to the experimentally relevant question of
how to define a nonlocal thermopower S12 ¼ ��V1=�T2,
which is not unique in contrast to the local thermopower

Sj ¼ ��Vj=�Tj ¼ LqT
jj =ðTSL

qV
jj Þ. In the Supplemental

Material [43], we discuss several possibilities to relate
voltage and temperature differences between the two
ferromagnets and the superconductor, avoiding a control
of energy currents. In this Letter, we chose to define the

thermopower at contact 1 via S12 ¼ LqT
12 =ðTSL

qV
11 Þ, which

is caused by a temperature difference �T2 at contact 2
under the conditions �V2 ¼ 0, �T1 ¼ 0, and Iq1 ¼ 0.

In Fig. 3, we show the dependence of S � S12 on the
polarization and spin mixing for T=Tc � 1, assuming
equal ferromagnets. The clean and the diffusive limits
show similar behavior, in particular, for weak polariza-
tions. For large polarization, values of more than
100 �V=K are achievable in both limits. Both limits ex-
hibit the same point symmetry with respect to the origin
and vanish if one of the spin-dependent parameters
vanishes. This behavior is understood from the SDOS as
follows. The symmetry of S with respect to the origin is,
according to Eq. (3), a consequence of a � rotation in spin
space. The trace in the current formula (shown in the
Supplemental Material [43]) is invariant under such a
unitary transformation. The sign change with respect to
the axes can be understood by Fig. 2. The two spin projec-
tions produce thermoelectric effects with opposite signs.

Depending on positive or negativeGMR, one or the other of
the two contributions will be weighted more. Thus, a sign
change in GMR changes the sign of the thermopower. On
the other hand, a sign change in G� interchanges the roles
of spin-up and spin-down contributions to the DOS and
hence changes the sign of the thermopower, too. Similar
arguments explain the zero crossing of the thermopower
when both spin-polarized peak positions in Fig. 2(a) cross
the Fermi level. The same mechanism leads to a sign
change in the clean limit, when the spin-split Andreev
levels cross at the Fermi energy. Here, the effect is even
more drastic since the width of the crossing peaks is
determined solely by the transmission to the ferromagnets.

We determine the coefficient matrix L̂ in Eq. (1) for
temperatures across Tc. We concentrate on the parameters

LqT
11 and LqT

12 , as they are representative for local and

nonlocal thermoelectric properties. In Fig. 4, we plot these
parameters for different spin-mixing angles and 10%
polarization. Remarkably, we obtain qualitatively compa-
rable behaviors of both limits although they are based on
very different assumptions. The quantitative differences are
related to the different shifting mechanisms of the subgap
peaks already pointed out above. Hence, the best comparison
is found for small values of�’ (ballistic) andG� (diffusive).
We find a zero crossing at a finite temperature in both cases.
The similarity of local and nonlocal parameters for small
temperatures can be understand from the thermally insulat-
ing behavior of superconductors at small temperatures.
We observe that the coefficients in Eq. (1) fulfill a

generalized Onsager symmetry. Onsager’s symmetry for
local currents was originally derived from microscopic
reversibility [28]. Generalizations of Onsager’s reciprocity
theorem have been recently discussed using statistical
arguments [45–47]. Here, we find a generalization for

FIG. 3 (color online). Nonlocal thermopower S ¼ LqT
12 =TSL

qV
11

for a symmetric setup as a function of polarization P and a
spin-mixing parameter in the (a) clean and (b) dirty limits
for T ¼ TS ¼ 0:1Tc. We assume equally polarized channels,
P n � P . In (a), T n1 � T 1 ¼ 0:1 ¼ T 2 � T n2, L ¼ 0:5	0,
��1 ¼ ��2 ¼ �=20; in (b), G1 ¼ G2 ¼ 0:1GS and �Th ¼
0:5�0. S is plotted in units of gkB=jqj, where g¼
�T 2ð1þP 2Þ��2=2� in the clean limit and g¼�G2=
ðG2þGSÞ in the dirty limit.
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FIG. 4 (color online). Temperature dependence of local and
nonlocal thermoelectric coefficients for a symmetric setup in
the clean and dirty limits for various spin-mixing parameters �’
and G�. Both coefficients are normalized to the normal state
value of the nonlocal conductance ðLqV

12 ÞT>Tc
and are plotted in

units of kBTc=jqj. Here, P n � P ¼ 0:1, �Th ¼ �0, and all other
parameters are the same as in Fig. 3.
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nonlocal superconductor-ferromagnet three-terminal de-
vices that include supercurrents as well as crossed
Andreev reflection processes. This follows directly from
the analytical formulas (5)–(10) in the clean limit using
relations like �jð";��’Þ ¼ ���

j ð�";�’Þ (an example

is given in the Supplemental Material [43]) and is also
verified numerically for the diffusive case. This Onsager
symmetry holds for any relative angle between the mag-
netization axes of the two ferromagnets.

In conclusion, we have opened a way of utilizing thermo-
electric effects in superconducting spintronics. This possi-
bility of controlling energy flow in superconducting
heterostructures with spin polarized electrodes allows for a
multitude of novel applications. Particularly interesting for
applications is our finding of a zero crossing in the Seebeck
coefficients as a function of temperature, spin polarization,
and the relative angle of the magnetization axes. This not
only would give a possibility to measure spin-filtering pa-
rameters and the so far experimentally inaccessible spin-
mixing parameters but would also allow for sensitive and
controllable thermal elements in superconducting circuits.
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