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A simple physical realization of an integer quantum Hall state of interacting two dimensional bosons is

provided. This is an example of a symmetry-protected topological (SPT) phase which is a generalization

of the concept of topological insulators to systems of interacting bosons or fermions. Universal physical

properties of the boson integer quantum Hall state are described and shown to correspond with those

expected from general classifications of SPT phases.
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Introduction.—Consider a system of two dimensional
bosons with particle number conservation in the absence
of time reversal symmetry. Can such a system form a
gapped phase that is qualitatively different from a conven-
tional Mott insulator, but has no ‘‘intrinsic’’ topological
order—i.e., no fractional excitations and a unique ground
state on topologically nontrivial manifolds? Recent work
shows that the answer is yes. In fact, according to the
powerful cohomology classification scheme of Ref. [1],
there are infinite number of such phases, with each phase
labeled by an integer n � 0.

More generally, Ref. [1] proposed a classification
scheme for bosonic phases with arbitrary symmetry
(time reversal, particle number conservation, etc.) and no
intrinsic topological order. These phases have been called
symmetry-protected topological (SPT) phases and can be
regarded as generalizations of integer quantum Hall states
and topological insulators to interacting systems of either
bosons or fermions. Loosely speaking, SPT phases are
characterized by the fact that their ground state wave
functions have short-range entanglement, but are never-
theless distinct from a product state, such as a conventional
Mott insulator. More physically, SPT phases are distin-
guished by the presence of robust edge modes that cannot
be gapped out or localized unless the relevant symmetry is
broken [2,3].

Very recently Lu and Vishwanath [4] provided a
beautifully simple discussion of such symmetry-protected
topological phases in two dimensions in terms of a Chern-
Simons approach and a classification of the associated K
matrices in the presence of symmetries. (A similar analysis
was given in Ref. [5] for the case of time reversal and
charge conservation symmetry.) Their description gives
easy access to the universal properties of such phases.
For the specific case we consider here, namely bosons
with a Uð1Þ charge conservation symmetry [6], Ref. [4]
showed that the integer that labels these phases can be
physically interpreted in terms of a quantized electric Hall
conductivity. Specifically, the phase labeled by n has an
electric Hall conductivity of �xy ¼ 2n in appropriate units.

Hence, these phases can be thought of as integer quantum
Hall states for bosons.
Here we propose a simple physical system where the

simplest integer quantum Hall state may be realized.
(An alternative realization using a coupled wire construc-
tion is discussed in Lu and Vishwanath [4]). Specifically
we argue that a system of two-component bosons
in a strong magnetic field may admit a stable integer
quantum Hall phase. A natural realization is in terms of
pseudospin-1=2 ‘‘spinor’’ bosons of ultracold atoms in
artificial gauge fields. We analyze the basic physical prop-
erties of this state and show that they agree with the results
expected from the general classification of Refs. [1,4].
In particular, the particle number Hall conductivity is
quantized to be 2 while the thermal Hall conductivity is
quantized to 0. This is related to the presence of two
branches of counterpropagating chiral edge modes—one
that carries particle current and one that is neutral—that are
protected by the global charge Uð1Þ symmetry. As a bonus
we show that when pseudospin SUð2Þ symmetry is present,
the gapless edges cannot be gapped even if boson number
conservation is explicitly broken. Thus, in this situation,
this state may equally well be viewed as an example of an
SUð2Þ symmetric SPT state, which also is predicted to
occur by the classification of Ref. [1].
An important limitation of our analysis is that we do not

identify a specific microscopic Hamiltonian that realizes
the integer quantum Hall phase. Instead, we describe a
general class of systems where these states may occur.
A particularly simple example is one where the bosons
interact just through delta-function repulsion. We, how-
ever, leave questions of energetics to future work.
The model.—We consider a two-component system of

bosons (for instance, spinor bosons or a bilayer system) in
a strong magnetic field B such that each component is at
filling factor � ¼ 1. Initially we assume that there is no
interspecies tunneling but will relax this assumption later.
Without interspecies tunneling, the system actually has
Uð1Þ �Uð1Þ symmetry corresponding to separate conser-
vation of the two species of bosons. The Hamiltonian is
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H ¼ X

I

HI þHint; (1)

HI ¼
Z

d2xbyI
�
�ð ~r� i ~AÞ2

2m
��

�
bI; (2)

Hint ¼
Z

d2xd2x0�IðxÞVIJðx� x0Þ�Jðx0Þ: (3)

Here bI is the boson annihilation operator for species I

where I ¼ 1, 2 and �I ¼ byI bI is the corresponding boson

density. The vector potential ~A describes the external B
field. We assume that the interactions VIJ are short ranged
and repulsive.

Depending on the detailed form of the interactions, a
number of different states may be realized by this system.
Here we focus on a particular candidate state that corre-
sponds to the integer quantum Hall phase discussed above.
Later we will discuss some of the other possible competing
phases.

To construct our candidate state, we use a flux attach-
ment Chern-Simons theory. We define new boson operators

~b1ðxÞ ¼ e�i
R

d2x0�ðx�x0Þ�2ðx0Þb1ðxÞ (4)

~b2ðxÞ ¼ e�i
R

d2x0�ðx�x0Þ�1ðx0Þb2ðxÞ; (5)

where �ðxÞ is the angle at which the vector ~x points. This
implements a flux attachment where each boson is attached
to one flux quantum of the other species. We will call the

bosons ~b1;2 ‘‘mutual composite bosons.’’ With � ¼ 1 for

each species, we can clearly cancel the flux of the external
magnetic field in a flux smearing mean field approxima-
tion. Following the usual quantum Hall logic, an effective
Chern-Simons Landau-Ginzburg theory may be written
down in terms of these mutual composite bosons and takes
the form

L ¼ X

I

LI þLint þLCS

LI ¼ i~b�I ð@0 � iAI0 þ i�I0Þ~bI

� j ~r~bI � ið ~AI � ~�IÞ~bIj2
2m

þ�j~bIj2

Lint ¼ �VIJj~bIj2j~bJj2

LCS ¼ 1

4�
����ð�1�@��2� þ �2�@��1�Þ:

(6)

Here we have introduced two gauge fields �1 and �2

coupled by a mutual Chern-Simons term to implement
the flux attachment. For convenience we have also intro-
duced external probe gauge fields AI, which couple to the
boson currents of species I.

As the mutual composite bosons see zero average flux,
we can imagine a situation in which they condense. This
will lock the internal gauge field �I to the probe external

field AI. The effective Lagrangian for the probe gauge
fields then becomes

Leff ¼ 1

4�
����ðA1�@�A2� þ A2�@�A1�Þ: (7)

Let us now define new probe gauge fields that couple to the
total charge and pseudospin currents: Ac ¼ ðA1 þ A2Þ=2,
As ¼ ðA1 � A2Þ=2. In terms of these fields,

Leff ¼ 1

2�
����ðAc�@�Ac� � As�@�As�Þ: (8)

It follows that this state is incompressible and has a quan-
tized electric Hall conductivity of�xy ¼ þ2 in appropriate

units. It is thus an integer quantum Hall state of bosons. We
can also see that this state has a pseudospin Hall conduc-
tivity of �2. However, this quantity is less robust as
pseudospin conservation can be broken by inclusion of
interspecies tunneling.
Several implications follow from the nonzero value for

the electric Hall conductivity. First, we can see that the
above quantum Hall state belongs to a different phase from
the conventional Mott insulator (whose Hall conductivity
vanishes). Second, we conclude that the above system has
robust gapless edge modes, which cannot be gapped out
unless charge conservation symmetry is broken (either
explicitly or spontaneously).
For certain purposes, it is useful to describe this state

using the K-matrix formalism for Abelian Chern-Simons
theory. Starting from the Chern-Simons term Eq. (6), it is
not hard to show that the above state corresponds to a K
matrix

K ¼ 0 1

1 0

 !
;

and a charge vector tT ¼ ð1; 1Þ. An important consequence
of this identification is that the system does not support
quasiparticle excitations with fractional charge or frac-
tional statistics; in general such fractionalized excitations
require a K matrix with jdetðKÞj> 1.
To obtain a model for the edge modes, we use the bulk-

edge correspondence for Abelian Chern-Simons theory.
According to this correspondence, the edge theory corre-
sponding to the above K matrix is given by

L ¼ 1

4�
ð@x	1@t	2 þ @x	2@t	1 � vIJ@x	I@x	JÞ; (9)

where 1
2� @x	I describes the density of bosons in layer I,

and where vIJ is the velocity matrix. Diagonalizing the
above action, it is easy to check that the edge contains two
counterpropagating chiral modes—one of which carries
electric charge, and one of which is electrically neutral
(but carries pseudospin). As a result of this structure,
the thermal Hall conductivity vanishes, even though the
electric Hall conductivity is nonzero. We note that the
vanishing of the thermal Hall conductivity distinguishes
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the above integer quantum Hall state from another class of
unfractionalized bosonic phases that require no symmetry
at all—namely the phases discussed in Refs. [4,7]. These
phases have a nonvanishing thermal Hall conductivity
which is a multiple of 8 (in appropriate units).

At a microscopic level, we can understand the stability
of the edge as arising from the fact that backscattering
between the two counterpropagating modes is prohibited
by the Uð1Þ charge conservation symmetry. In this sense,
the edge modes are symmetry-protected. More generally,
edge reconstruction may modify the above picture, but
properties such as the Hall response and overall edge
stability are universal.

Wave function.—It is tempting but incorrect to guess that
the ground state wave function for the above bosonic
quantum Hall state is simply

�ðfzi; wjgÞ ¼
Y

i;j

ðzi � wjÞe�
P

i
ðjzij2þjwij2Þ=4; (10)

where zi,wi label the complex spatial coordinates of the two
species of bosons. In the standard Halperin notation for
bilayer quantum Hall states, this is a (001) state of bosons.
This wave function is unstable to spontaneous phase sepa-
ration, as is readily seen using the plasma analogy: one can
check that the plasma has attractive logarithmic interactions
between the pseudospin densities, which implies a sponta-
neous ordering of the pseudospin density, i.e., phase sepa-
ration. Amodifiedwave function, which describes a uniform
boson integer quantum Hall state, may be written down as

�mod ¼
Y

i<j

jzi � zjj
Y

i<j

jwi � wjj

�Y

i;j

ðzi � wjÞ
jzi � wjj e

�P
i
ðjzij2þjwij2Þ=4: (11)

In the plasma analogy this wave function has the same
effective Hamiltonian as the (110) state and hence describes
a uniform density fluid with � ¼ 1 for either species.
Indeed, a direct derivation of the wave function from the
composite boson theory along the lines of Ref. [8] yields
precisely �mod.

Alternatively, we can construct a ground state wave
function using a mean field flux attachment procedure
similar to the one used in Ref. [9] to construct a spin-
singlet � ¼ 2=3 state (see also Ref. [10]). First, we imagine
attaching �1 flux quanta to each boson, thereby trans-
forming the system into a bilayer of composite fermions
at filling 1=2 � 1=2. We then imagine that the composite
fermions form a (111) state. Finally, we project onto the
lowest Landau level. The resulting wave function is

�flux ¼ PLLL

Y

i<j

jzi � zjj2
Y

i<j

jwi � wjj2

�Y

i;j

ðzi � wjÞe�
P

i
ðjzij2þjwij2Þ=4; (12)

where PLLL denotes the projection onto the lowest
Landau level.
An interesting feature of the two wave functions,

Eqs. (11) and (12), is that they are spin singlets under the
SUð2Þ pseudospin symmetry. (One way to see this is to
note that, before projection, both wave functions can be
written as a product of the antianalytic (221) state and a
fully symmetric function of zi, wj. Given that the (221)

state is a spin singlet, it follows that both of the above wave
functions are also spin singlets.) This enhanced symmetry
means that we can equally well regard the bosonic integer
quantum Hall state as an example of an SPT phase with
SUð2Þ pseudospin symmetry, rather than Uð1Þ particle
number conservation symmetry. In particular, explicit
breaking of the global Uð1Þ symmetry by adding spin
singlet pairing terms to the Hamiltonian will not gap out
the edges so long as pseudospin SUð2Þ symmetry is pre-
served. Thus either of these two symmetries will lead to
protected gapless edge modes, due to the nonzero electric
and pseudospin Hall conductivities, respectively.
Competing states.—We now discuss some of the pos-

sible competitors to the above integer quantum Hall state.
One possibility is phase separation: the two species of
bosons may clump together in different spatial regions.
Such phase separated states are particularly natural in
the limit where the interspecies interaction V12 is large
compared with the same-species interactions V11, V22.
Interestingly, a fully phase separated state has � ¼ 2
in each puddle and therefore may realize a k ¼ 4
non-Abelian Read-Rezayi state [11,12]. Another potential
competitor is a decoupled state where the two species of
bosons form uncorrelated � ¼ 1 states. Such decoupled
states are likely to be realized in the limit where V12 is
small compared with V11, V22. This possibility is also
potentially interesting because bosons at � ¼ 1 may form
a k ¼ 2 non-Abelian Read-Rezayi state that is just the
familiar Moore-Read Pfaffian state [11]. A third compet-
itor is the � ¼ 2 non-Abelian spin singlet state of Ardonne
and Schoutens [13]. This state is a good candidate at or
near the SUð2Þ symmetric point where V12 ¼ V11 ¼ V22.
Determining the specific circumstances under which the

bosonic integer quantum Hall state wins out over its com-
petitors is a detailed energetics question that will not be
attempted here. We simply note that the integer quantum
Hall state is a reasonable candidate in the regime where the
interspecies interaction V12 is comparable to the same-
species interactions V11, V22. We mention in passing that
very recent numerical work [14,15] suggests that, in the
case of delta-function repulsive interactions, the ground
state at the SUð2Þ symmetric point is a gapped spin singlet.
Among other possibilities, this state could be the integer
quantum Hall state discussed here, or the non-Abelian spin
singlet state of Refs. [13,16].
An obvious experimental context to seek a realization

of this phase is in ultracold atoms in artificial gauge fields.
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In that context, instead of a bilayer it will be simpler to
use spinor bosons and let the boson spin play the role of
the bilayer index. Given the large number of interesting
competing phases in this system, it seems worthwhile to
explore experimentally the phases of spinor bosons at a
total filling factor � ¼ 2.

Nonlinear sigma model description.—It is interesting to
view the boson integer quantum Hall state from a different
point of view. As is well known [17] the Bose condensate
phase of two-component bosons is described by an SUð2Þ
matrix order parameter (with, in general, Oð2Þ �Oð2Þ
anisotropy). To be specific, write the fields b1;2 in terms

of their real and imaginary parts b1 ¼ b1r þ ib1i,
b2 ¼ b2r þ ib2i, and restrict them to the surface
jb1j2 þ jb2j2 ¼ 1. This can be organized as an SUð2Þ
matrix g¼b1rþib1i


zþib2r

xþib2i


y where ~
 are the
usual Pauli matrices. It is clear that the charge Uð1Þ sym-
metry acts by right multiplication by ei


z� while the pseu-
dospin Uð1Þ is generated by left multiplication by ei


z�.
[Full pseudospin SUð2Þ rotation symmetry, if present, is
realized as left multiplication by an SUð2Þ matrix.]

It is natural to attempt a description of the phases of the
two-component boson system in terms of a quantum non-
linear sigma model based on this SUð2Þ matrix order
parameter. The Bose condensed phase of course has
hgi � 0. Disordered phases where hgi ¼ 0 correspond to
the strong coupling limit of such a nonlinear sigma model.
In general, the effective nonlinear sigma model for an
SUð2Þ matrix-valued order parameter in two space dimen-
sions admits an interesting topological � term correspond-
ing to �3ðSUð2ÞÞ ¼ Z.

We now argue that when � ¼ 2�, this sigma model
describes an bosonic integer quantum Hall phase, while
when � ¼ 0, it describes a trivial boson insulator (e.g., an
ordinary boson Mott insulator). One way to see this is to
analyze the edges of the two systems. First consider a
sigma model with � ¼ 2� and full SOð4Þ � SUð2ÞR �
SUð2ÞL symmetry. In this case, it is known that the bound-
ary to the vacuum is described by a 1þ 1 dimensional
SUð2Þ level-1 Wess-Zumino-Witten model [18,19] where
the SUð2ÞR and SUð2ÞL currents move in opposite direc-
tions. Introducing anOð2Þ �Oð2Þ anisotropy, we obtain an
edge structure with an electrically charged edge mode
moving in one direction and a pseudospin edge mode
moving in the opposite direction. This structure agrees
with the bosonic integer quantum Hall edge theory
Eq. (9). Likewise, when � ¼ 0, the boundary of the sigma
model is presumably gapped—in agreement with the triv-
ial boson insulator edge. We interpret these matching edge
theories as evidence for the identifications claimed above.

The topological nonlinear sigma model at � ¼ 2� also
plays a crucial role in the cohomology classification [1].
Thus the discussion in this section provides a connection
between the K-matrix description of the boson integer
quantum Hall state and the cohomology classification.

Recently, simulations ofOð2Þ �Oð2Þ models with � terms
have appeared [20,21]. It should be interesting to examine
disordered phases of models similar to these near � ¼ 2�
and study their boundary to � ¼ 0 insulators.
Discussion.—In this Letter, we have constructed an inte-

ger quantum Hall state for bosons with an electric Hall
conductivity of �xy ¼ 2 (in appropriate units). It is natural

to wonder whether it is possible to construct a more
‘‘elementary’’ integer quantum Hall state—that is, a state
with �xy ¼ 1. We now argue that such a state is impossible

if the system does not support fractional quasiparticle
excitations. To see this, consider a general bosonic quan-
tum Hall state, and imagine puncturing it at some point z0
and adiabatically inserting 2� flux through the hole.
This operation will create an excitation at z0 with charge
�xy. Let us consider the braiding statistics of these excita-

tions. If we braid one excitation around another, the statistical
phase follows from the Aharonov-Bohm effect: � ¼ 2��xy.

Similarly, if we exchange two particles, the associated phase
is �=2 ¼ ��xy. On the other hand, if the state does not

support fractional quasiparticles, then these excitations
(like all other quasiparticle excitations) must be bosons. We
conclude that�xy must be even for any bosonic quantumHall

state without fractional quasiparticle excitations.
We expect that the construction in this Letter can be

extended to other symmetry-protected topological phases,
such as bosonic topological insulators, which are protected
by time reversal and charge conservation symmetry, and
bosonic phases, which are protected by a discrete Zn

symmetry. The boson integer quantum Hall state described
here provides a very simple prototypical example of
these phases that, in addition, may be realizable in future
experiments.
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