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The generation of valley current is a fundamental goal in graphene valleytronics but no practical ways

of its realization are known yet. We propose a workable scheme for the generation of bulk valley current in

a graphene mechanical resonator through adiabatic cyclic deformations of the strains and a chemical

potential in the suspended region. The accompanied strain gauge fields can break the spatial mirror

symmetry of the problem within each of the two inequivalent valleys, leading to a finite valley current due

to quantum pumping. An all-electrical measurement configuration is designed to detect the novel state

with pure bulk valley currents.
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Apart from pseudospin (chirality), charge carriers
in graphene are also characterized by the valley index
(sometimes called isospin) originating from the existence
of two conical (Dirac) points per Brillouin zone [1]. A
valley polarized state requires the absence of time reversal
symmetry, as the two valleys are related by this symmetry.

Motivated by the growing field of spintronics [2,3], it has
been proposed that manipulation of the valley index may
open a new way to transmit information through graphene,
and different manipulation schemes were proposed [4–12].
After the initial enthusiasm, interest in ‘‘valleytronics’’
declined somehow, as it was soon realized that a valley
polarized current will be degraded by intervalley scattering
induced by atomic scale disorder [1], making the mainte-
nance of valley polarized states difficult. In addition, a
number of proposals were based on the spatial separation
of valley currents at zigzag edges [4], which requires well-
defined edge orientation and that the edge currents are free
of short range scattering.

We present a new scheme to induce valley polarized
currents in graphene which avoids some of the pitfalls of
previous proposals. The breaking of time reversal symme-
try is achieved by means of time dependent fields, instead
of a magnetic field. The induction of valley polarization
by ac fields has been proven in MoS2 [13] as well as in
(111)-oriented silicon metal-oxide-semiconductor field-
effect transistors [14] where optical radiation was used in
order to excite valley polarized charge carriers. As in these
experiments, the scheme discussed below generates valley
currents throughout the entire system. However, the ac
driving force in our proposal is due to mechanical
vibrations of a nanoelectrical-mechanical system (NEMS
[15–18]), as illustrated in Fig. 1(a).

We employ a continuum-medium description of
graphene with the Dirac Hamiltonian,

H�ð ~k; ~AÞ ¼ @vf½�ðkx �AxÞ�x þ ðky �AyÞ�y�
þ�12; (1)

where þð�Þ denotes the KðK0Þ valley index, vf is the

Fermi velocity, and � is the chemical potential. ~Að~rÞ is
an effective gauge field describing the modifications to the
hopping amplitudes induced by the strain fields uijð ~rÞ
[19,20], and has opposite signs at the two valleys as
required by time-reversal symmetry. We described the
deformation of the suspended region, i.e., � L

2 < y< L
2 ,

with a simple uniaxial strain given by uyy ¼ u and

uxx ¼ uxy ¼ 0. It will be shown below that for arbitrary

crystallographic orientation � [see Fig. 1(b)], ~Að~rÞ in the
suspended region is given by the expression

~Að~rÞ ¼ ��u

a
ð�cos 3�; sin 3�Þ; (2)
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FIG. 1 (color online). Illustration and definitions of the
(a) graphene based NEMS device and (b) crystallographic
coordinate systems used in the Letter.
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where�� 2 is the electron Gruneisen parameter and �� 1
3

is a parameter related to graphene’s elastic property as

described in Ref. [19]. a � 1:4 �A is the interatomic dis-
tance. Adiabatic cyclic variations of the internal parame-
ters, such as deformations in the strains (u) and chemical
potential (�) in the suspended region, over a work cycle
can constitute a scheme for adiabatic quantum pumping
[21,22] (for the general theory of quantum pumping, see
Refs. [23,24]). For the charge pumping one needs to break
the spatial mirror symmetry, e.g., making the right and left
leads different (e.g., by different doping) [24]. Here wewill
demonstrate that for the case of symmetric leads the valley
current through the system is, in general, nonzero. In this
case, the pumping current through each channel will be
shown to follow the general relation (with periodic bound-
ary condition along the transversal x direction),

Ipump;K
LðRÞ ðkx; �Þ ¼ �Ipump;K0

LðRÞ ð�kx; �Þ� 0 if �� n
�

3
; (3)

where the subscript L(R) refers to the left (right) lead (ILðRÞ
is defined positive when the current flows out of the
device). Equation (3) represents the central result of our
Letter, and embodies the intrinsic symmetry of valley
pumping in graphene NEMSs, as we will show later.
Below, we present detailed derivations leading to Eq. (3)
and discuss the physical consequences that follow, such as
the generation of pure bulk valley current and its possible
experimental detection.

We start by considering the case � ¼ 0, where the trench
is directed along the zigzag direction [see the (x0, y0)
coordinate system shown in Fig. 1(b)]. In this case, the
Hamiltonian has the form of Eq. (1) and the pseudomag-
netic vector potential reads

Ax ¼ ��

a
ðuxx � uyyÞ; Ay ¼ � 2��

a
uxy: (4)

For arbitrary orientation, i.e., � � 0, Eqs. (1) and (4) have
to be recast in the new coordinate frame (x, y). The two
coordinate systems are related by

x

y

 !
¼ R

x0

y0

 !
; R ¼ cos � sin �

�sin � cos �

 !
: (5)

The wave vector ~k transforms in the same way as ~r such

that ~k � ~r is a rotational invariant quantity. The strain field is
defined as uij ¼ 1

2 ð@uj@xi
þ @ui

@xj
Þ, which is a symmetric tensor

of rank two. Hereafter we use the subscript or superscript 0
to denote physical quantities in the original frame (x0, y0).

Thus, we have ~k0 ¼ R�1 ~k and

u0xx � u0yy ¼ cos 2�ðuxx � uyyÞ � 2 sin 2�uxy;

u0xy ¼ 1
2 sin 2�ðuxx � uyyÞ þ cos 2�uxy:

(6)

By using the new coordinates in the Dirac Hamiltonian, we
can transform it to the rotated frame,

H�ð ~k; ~AÞ ¼ @vf

�=@vf e�i�½ð�kx � ikyÞ � ð�Ax � iAyÞ�
e�i�½ð�kx þ ikyÞ � ð�Ax þ iAyÞ�Þ �=@vf

 !
; (7)

where we have defined the pseudomagnetic field ~A in the
rotated frame as [25]

Ax

Ay

 !
¼ Rð3�Þ

��
a ðuxx � uyyÞ

�2��
a uxy

0
@

1
A: (8)

Equations (7) and (8) constitute the continuum-
medium description of strained graphene in an arbitrarily
rotated frame. Here, two comments follow about this gen-
eral form. First, if we perform the gauge transformation of
the wave function on the B sublattice c�K

B ! c�K
B e�i�,

the Dirac Hamiltonian can be made explicitly invariant
[i.e., Eq. (1)] under rotation. Thus, we can simply drop
the factor e�i� in Eq. (7) in the subsequent discussion.
Second, from the definition for pseudomagnetic field, it is
obvious that the form is of 2�=3 periodic in �, which
reflects the trigonal symmetry of the underlying honey-
comb lattice.

Next, we describe the quantum pumping problem based
on graphene NEMSs [22,26]. As discussed above, the
derived Hamiltonian given by Eq. (7) is physically

equivalent to Eq. (1). Suppose that between � L
2 < y< L

2 ,

the system has uniaxial strain uyy ¼ u and uxx ¼ uxy ¼ 0;

hence, Eq. (8) is reduced to

ðAx;AyÞð~rÞ ¼
8><
>:
0; jyj> L

2�
��u
a

�
ð�cos 3�; sin 3�Þ; jyj � L

2

(9)

with the expression given in Eq. (2) for the suspended
region. In the following, assuming a particular geometry
(the width W � L), the x direction is treated as transla-
tionally invariant. From Eqs. (7) and (9), one can easily
see that

Hþðkx; ky; ~A; �Þ ¼ H�ð�kx; ky;
~A;��Þ: (10)

We can call such combined symmetry the crystalline-
angle-combined mirror symmetry in the continuum-
medium model. It turns out that such combined symmetry
has a significant consequence on the relation of pumping
currents in each valley, i.e., Eq. (3), as will be elaborated
further.
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Due to the mentioned symmetry, we may focus only on
the K Dirac cone, whose Hamiltonian has the following
form for the different regions (i.e., i ¼ L, R, and G denote
y <� L

2 , y >
L
2 , and jyj � L

2 , respectively):

Hþ
i ð ~k; ~AÞ ¼ @vf

�i=@vf ð~kx � i~kyÞi
ð~kx þ i~kyÞi �i=@vf

0
@

1
A; (11)

where we have defined ð~kx; ~kyÞi ¼ ðkx �Ax; ky �AyÞi.
In this Letter, we consider mainly the symmetric case
�L ¼ �R � �G.

The eigenenergies and eigenstates of the Hamiltonian in
Eq. (11) read

Ei;sð ~kÞ ¼ �i þ s@vf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2x þ ~k2y

q
;

c i;sð ~kÞ ¼ eiðkxxþkyi yÞ
1

@vfð~kxþi~kyÞi
Ei;s��i

0
@

1
A; (12)

where s ¼ �1 refers to the electron or hole band, respec-
tively. Due to translational invariance in x direction, kx is
the same in all three regions. We consider now the equi-
librium situation where all three regions can be described

by a common chemical potential �. Obviously, ~kxi is

always real since kx is real. Then, ~kyi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2fi � ~k2xi

q
,

where kfi ¼ ���i
@vf

and the � sign is selected to give the

correct sign in the group velocity, depending on whether it

is an incident, transmitted, or reflected wave. Note that ~ky
can be purely imaginary representing evanescent waves in
the central region.

It is straightforward to calculate the scattering matrix for
our device. Without loss of generality, we can focus on the
case with the electron doping (�� �L > 0) in the leads.
The scattering coefficients are calculated to be

rd ¼ e�ikyLL
C2ðdÞ þ C3ðdÞ

C1ðdÞ ;

td ¼ e�ikyLL
�4 sin’L sin’Ge

iAyLd

C1ðdÞ ;

(13)

where rd and td are the reflection and transmission
coefficients with d ¼ 1ð�1Þ corresponding to the cases
with incident waves from y ¼ �1 (left lead) and y ¼ 1
(right lead), respectively; ’L and ’G are defined through

e�i’L ¼ kx � ikyLd

kfL
; e�i’G ¼

~kxG � i~kyG
kfG

: (14)

The CiðdÞ in Eq. (13) are defined as

C1ðdÞ ¼ 4i sin ð~kyGLdÞð1� cos’L cos’GÞ
� 4 cos ð~kyGLdÞ sin’L sin’G;

C2ðdÞ ¼ �2ið1þ e2i’LÞ sin ð~kyGLdÞ;
C3ðdÞ ¼ 2iei’L½sin ð~kyGLdþ ’GÞ þ sin ð~kyGLd� ’GÞ�:

(15)

Symmetries related with td and rd.—Next, we discuss
symmetry properties of the scattering amplitudes. First, we
note that ’GðdÞ ¼ ’Gð�dÞ, ’LðdÞ ¼ �’Lð�dÞ and they
are independent of the sign of �. Then, we can
obtain the relations satisfied by Ci’s: C1ðdÞ ¼ �C1ð�dÞ,
C2;3ð�dÞ	 ¼ C2;3ðdÞ. Based on these relations and the odd

parity of Ayð�Þ, we arrive at
tdðkx;�Þ¼ t�dðkx;��Þ; rdðkx;�Þ¼ rdðkx;��Þ: (16)

Symmetry of pumped valley-dependent current.—
According to the adiabatic pumping theory [23] and the
symmetry relations satisfied by rd and td, we obtain the

following relation for the pumping current Ipump;K
L ðkx; �Þ

for K valley:

Ipump;K
L ðkx; �Þ � Ipump;K

R ðkx;��Þ

¼ ie!

4�2

Z 2�=!

0
ds

�
dr1ð�Þ
ds

r1ð�Þ	 � dr�1ð�Þ
ds

r�1ð�Þ	
�
;

(17)

where we’ve used s as the time symbol to avoid confusion
with the transmission coefficient. Now, using the symmetry
relations satisfied by Ci’s and the fact that the common
complex factors for C2 and C3, i.e., ie

i’L , are independent
of time [see Eq. (19) for typical time dependence of
pumping parameters for graphene NEMS], we can simply
prove that the integrand in Eq. (17) is zero. By further
taking into account the current conservation condition

[I
pump;K
L ðkx;��Þ þ I

pump;K
R ðkx;��Þ ¼ 0] and the symmetry

relation guaranteed by Eq. (10) [i.e., I
pump;K0
L ð�kx; �Þ ¼

Ipump;K
L ðkx;��Þ], we arrive at the first part of Eq. (3), the
relation for pumped valley-dependent current, which is the
central result of this Letter. The above derivation based on
the explicit solution of scattering amplitudes demonstrates
the usefulness of the generic crystalline-angle-combined
mirror symmetry of the suspended graphene under uniaxial
strain. Later we will show that Eq. (3) and its consequences
are consistent with the inversion symmetry of the
whole system.
Next, we discuss some direct consequences of Eq. (3).

By integrating out the transversal wave vector kx, we can
get the following relation:

Ipump;K
LðRÞ ð�Þ ¼ �Ipump;K0

LðRÞ ð�Þ: (18)

Equation (18) means that the total pumping current at a
given lead is opposite for different valleys. Thus, the total
charge current is exactly zero. This situation is analogous
to the pure spin current generation in spintronics [27,28];
thus, we call this effect pure valley current generation. In
summary, we have shown that the application of an alter-
nating backgate voltage to graphene NEMSs can induce a
pure valley current via adiabatic pumping. In adiabatic
pumping theory, there are two necessary conditions for a
finite charge pumping effect, i.e., time reversal symmetry

PRL 110, 046601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

25 JANUARY 2013

046601-3



breaking and mirror symmetry breaking of the left or right
lead [24]. The above derivations show that the valley
pumping effect can be realized in a seemingly symmetric
two-terminal geometry with identical leads. However, the
mirror symmetry of the system (i.e., y ! �y) has actually
been broken for each valley when � � n�

3 . Such symmetry

breaking is embodied in the continuum theory through a
nonzero Ay component. This constitutes the second

part of Eq. (3). For a more quantitative understanding,

we present some numerical results of I
pump;K
L ð�Þ (in terms

of the pumped charge per cycle) for the K valley in
Fig. 2 using some typical experimental parameters, as
discussed below.

As stated above, the strain (u) and Dirac potential (�G) in
the suspended region are modulated by the ac backgate
voltage. Near resonance, they differ by a phase difference
� with a typical time dependence given by (with conven-
tional time symbol t) [22]

�G ¼ �G0½1þ 	� cos ð!tÞ�1=2;
~A ¼ ~A0½1þ 	A cos ð!tþ�Þ�2:

(19)

Assuming typical numbers for the static part �G0 ¼ �L ¼
0:3 eV, ~A0 ¼ 0:02kfðcos 3�;� sin 3�Þ, and the oscillat-

ing amplitude 	� ¼ 	A ¼ 0:2, we calculated the pumped
charge per cycle QK

c ð�Þ for K valley, as shown in

Fig. 2. By definition, the pumping current I
pump;K
L ð�Þ ¼

e!QK
c ð�Þ=2�. Our calculation indicates a nearly linear

scaling (not shown) of the pumping effect on length L of
the NEMSs, which is similar to the results in Ref. [22]. As
explicitly shown, the maximum pumping effect is reached
for the crystallographic angles corresponding to the
armchair-type x axis (� ¼ �=2þ n�=3, n 2 Z) while it
is zero at the zigzag-type x axis (� ¼ n�=3, n 2 Z). The

periodicity 2�=3 with � is easily seen. The valley current

can be defined as Ipump;vð�Þ ¼ Ipump;Kð�Þ � Ipump;K0 ð�Þ,
which is simply twice the value of Ipump;Kð�Þ. For the
typical resonance frequency of ! � 10 MHz [17] to
0.16 GHz [18], we arrive at numerical estimates Ipump;v �
0:1–10 pA=�m, a quantity measurable in experiment.
Furthermore, the signal can be amplified by (i) increasing
the area of suspended graphene part (the signal is roughly
proportional to both length and width in the theoretical
model we considered) and (ii) tuning the amplitude of the
ac voltage of the backgate to increase the oscillation mag-
nitude of strain or chemical potential.
The possibility of pure bulk valley current in this simple

pumping scenario looks very promising. The problem is
how to probe the valley current. Here we propose an all-
electrical measurement as shown in Fig. 3 (note the voltage
contacts are patterned on the supporting leads, instead of
on the suspended region). From Eq. (3), we can infer that
the charge current pertaining to carriers from the valley K
not only has an opposite longitudinal component with
respect to the charge carriers from the valley K0, but also
their transversal velocities are opposite. As pictorially
shown in Fig. 3, we expect charges accumulating on oppo-
site edges on the two sides of the NEMS. Based on this
observation, we predict that the resultant Hall voltage on
the left lead has the opposite sign of that on the right lead,
i.e., sgnðV12=V34Þ ¼ �1, which is the characteristic feature
of the bulk valley current flow.
The above picture can be made more quantitative.

Because kx, like charge, is a conserved quantum number in
our pumping scenario, we can introduce a quantity, valley-
dependent pumping Hall current, which can be calculated as

IHall;KLðRÞ ð�Þ ¼ P
kx
I
pump;K
LðRÞ ðkx; �Þ kxky . This Hall current accom-

panying the pure bulk valley current can be viewed as a result
of the effective pumping force, instead of the usual Lorentz
force due to a magnetic field. From Eq. (3) and the particle
conservation law for each kx channel, we can obtain

IHall;KLðRÞ ð�Þ ¼ IHall;K
0

LðRÞ ð�Þ ¼ �IHall;KRðLÞ ð�Þ: (20)
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FIG. 2 (color online). The pumped charge per cycle of the K
valley, denoted as QK

c . The valley current can be obtained by
e!QK

c =2�. The width is fixed to be 5000a (�700 nm), calcu-
lated for two different lengths as indicated. We fixed the phase
difference of the driving parameters � ¼ �=2 and take

j ~Aavj=kf � 0:002, which amounts to a strain u � 1:75
 10�4.

FIG. 3 (color online). Sketch of the pumping generation of
pure valley current and an all-electrical detection scheme. The
Hall voltage difference V12 ¼ V1 � V2 and V34 ¼ V3 � V4

across the NEMS is predicted to bear the opposite sign due to
the flow of pure valley current.
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Such Hall current on different leads can result in the opposite
Hall voltage. Thus the existence of pure valley currents
possibly can be detected in the leads by means of nonlocal
multiterminal measurements [29]. Finally, it’s worthy to
point out that such a hall current pattern is a reasonable
consequence of inversion symmetry and time reversal sym-
metry breaking of the system.

Our discussion above is restricted to the case with sym-
metrical leads. It is straightforward to extend our study to
the more general case with differently doped leads. In the
general situation, the current is not purely valley current,

i.e., I
pump;K
LðRÞ ð�Þ � �I

pump;K0
LðRÞ ð�Þ; thus, the charge pumping

current is finite.
To conclude, we have shown that through pumping

induced by mechanical vibrations bulk valley polarized
currents can be generated in graphene leads connecting
the graphene resonator with the trench directed at a general
crystallographic angle. We have demonstrated that the
generated current is purely a valley current (with zero net
charge pumping current) in the setup with the same doping
rate in the graphene leads. Together with an all-electrical
measurement scheme, our proposal opens a new direction
of exploiting the valley degree of freedom, thus pushing
graphene-based valleytronics a step forward toward real
applications.
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