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We investigate the electronic structure induced by wedge disclinations (conical singularities) in a

honeycomb lattice model realizing Chern numbers � ¼ �1. We establish a correspondence between the

bound state of (i) an isolated �0=2 flux, (ii) an isolated pentagon (n ¼ 1) or heptagon (n ¼ �1) defect

with an external flux of magnitude n��0=4 through the center, and (iii) an isolated square or octagon

defect without external flux, where �0 ¼ h=e is the flux quantum. Because of the above correspondence,

the existence of isolated electronic states bound to disclinations is robust against various perturbations.

Hence, measuring these defect states offers an interesting probe of graphene-based topological insulators

which is complementary to measurements of the quantized edge currents.
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The surface states of topological insulators (TIs) [1–3]
are protected by time-reversal symmetry and charge con-
servation, both of which can persist independently from
microscopic details. However, in sufficiently pure materi-
als, crystalline symmetries can equally protect nontrivial
properties of the electronic structure [4–6], such as surface
states of certain high-symmetry surfaces [7,8]. That the
presence of crystalline symmetries enriches the topological
response is further exemplified by the observation that
dislocations in the crystal lattice can robustly bind in-gap
states in certain TIs [9–12]. In these instances, the electrons
near the Fermi energy acquire a Berry phase of � when
encircling the defect which induces changes of the elec-
tronic structure in analogy to a magnetic flux tube with
half-integer multiple of the flux quantum�0 ¼ h=e ¼ 2�.
Namely, in two dimensions, a single Kramer’s pair appears
in the gap [13–17] while in three dimensions, protected
one-dimensional modes form [18–22].

In this Letter, we demonstrate that also disclinations can
robustly bind in-gap states in certain TIs with crystalline
symmetries. Our conclusion is based on the study of wedge
disclinations on the honeycomb lattice; see Fig. 1. Such
conical defects form the elementary building blocks of
various extended lattice defects observed in graphene and
related carbon-based structures [23–28]. While the intrin-
sic spin-orbit coupling in graphene is too small to access
the TI phase [29,30] experimentally, several promising
routes exist to stabilize a topological phase, either by
enhancing the intrinsic spin-orbit coupling via adsorption
[31–34] or by using Rashba spin-orbit coupling [35,36].
Our discovery of robust defect states demonstrates the
possibility of a probe of the topological state in
graphene-based TIs or related systems [37–39], which is
complementary to the measurement of quantized edge
currents.

On the hexagonal lattice, an isolated wedge disclination
is constructed by locally replacing a hexagon by an f-gon
(we discuss f ¼ 4, 5, 7, 8) while preserving the threefold
connectivity of the honeycomb lattice. This introduces a
global change of the lattice best illustrated by Volterra’s
cut-and-glue construction [40], in which a wedge is
removed from or added before gluing the two sides back
together to form a cone. The point group symmetry
restricts the possible opening angles to multiples of �=3
and we label different defects by the integer n counting the
number of removed (n > 0) or added (n < 0) �=3 wedges.
To study the interplay between such conical singularities
and electrons in topologically nontrivial bands, we inves-
tigated a model of a Chern insulator for spinless fermions
on the honeycomb lattice, first introduced by Haldane [41]:

H ¼ �t
X
hi;ji

ðcyi cj þ H:c:Þ þ t2i
X
hhi;jii

ði�ijc
y
i cj þ H:c:Þ: (1)

The real nearest-neighbor hopping is t and we assume a
purely imaginary second-neighbor hopping it2i�ij where

�ij ¼ �1 depends on the hopping direction [41]. At

half-filling, the model defined in Eq. (1) has a finite Hall
conductivity �xy ¼ �e2=h with a Chern number � ¼
sgnðt2iÞ. A generalization to a time-reversal invariant
TI, in which the imaginary second neighbor hopping is
generated by intrinsic spin-orbit coupling, has been
discussed by Kane and Mele [29,30] and our results
generalize to this situation, as well.
The main findings of this work are the connection

between the bound state induced by (i) an isolated �0=2
flux, (ii) an isolated pentagon (n ¼ 1) or heptagon
(n ¼ �1) defect with an external flux of magnitude
n��0=4 through the center, and (iii) an isolated square
(n ¼ 2) or octagon (n ¼ �2) defect without external flux.
We reached this conclusion in three different ways:
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(i) direct computation of the local density of states in the
lattice model, (ii) the analysis of disclinations in the con-
tinuum model, and (iii) their description in terms of
coupled edge modes.

To compute the local density of states (LDOS) near
the defect core in the lattice model, we fixed the ratio
t2i=t ¼ 0:4 and used the Lanczos algorithm with open
boundary condition [42] to obtain the retarded local
Green’s function GiiðEÞ from which the LDOS NiðEÞ ¼
� 1

� ImGiiðEÞ was derived. We keep up to 300 states, and

use a small imaginary part of 0:02t to obtain a smooth
spectra. Figure 1(a) shows the LDOS in the defect-free
case on the hexagon through which an external flux is
threaded. Turning on a finite flux [43] moves a bound
state from the valence to the conduction band reaching
E ¼ 0 for � ¼ �0=2 ¼ �. From particle-hole symmetry,
NiðEÞ¼Nið�EÞ, and the conservation of states,R1
�1 dENiðEÞ ¼ 1, it follows that the excess or deficit

charge bound to the � flux is �e=2 [13]. Our numerical
integration of the LDOS confirmed this expectation.
Studying the LDOS on a pentagon defect, Fig. 1(b), we

identify an in-gap state even without external flux.
Threading� ¼ �=2 through the pentagon shifts the bound
state energy producing a mid-gap state in analogy to the
situation (a) with � flux. On the other hand, a flux � ¼
��=2 produces two symmetric resonances close to the
band edges. Switching from the pentagon to the heptagon
defect (n ¼ �1) or changing the sign of the Chern number,
we find that the opposite sign of the flux is required to
produce the mid-gap state.
Figure 1(c) illustrates the case of a square defect.

The LDOS shows that the midgap state is now realized
in the absence of any external flux. To completely remove
the bound state, an external � flux is required. We find the
same behavior also for the octagon defect (not shown).
Moreover, this property does not rely on particle-hole
symmetry (or the fact that the bound-state energy is at
E ¼ 0): in an analogous calculation including also real
second-neighbor hopping, we find that only an external �
flux is able to completely remove the bound state. The
robustness of the correspondence between (a), (b), and (c)
is further discussed below.
The numerical results presented in Fig. 1 can be con-

sistently explained from a continuum description, as we
discuss in the following. In the low-energy limit, Eq. (1)
reduces to the Dirac Hamiltonian with a ‘‘Haldane mass’’

m ¼ 3
ffiffiffi
3

p
t2i:

H ¼ v½�z�xpx þ �ypy� þm�z�z; (2)

where ~� ¼ ð�x; �y; �zÞ, ~� ¼ ð�x; �y; �zÞ are Pauli matrices

denoting the sublattice and valley degrees of freedom,

respectively, and v ¼ ffiffiffi
3

p
ta=ð2@Þ is the Fermi velocity.

H acts on the four-component spinor �ðrÞ ¼
½c AðrÞ; c BðrÞ; c A0 ðrÞ; c B0 ðrÞ�T , where A and B label the
sublattice in valley K and A0 and B0 in valley K0 [43]. It is
known that deformations of the honeycomb lattice
enter the continuum description via fictitious gauge fields
[44–46]. As we review below, topological point defects
manifest themselves by spatially well-localized fluxes of
the fictitious fields [23].
We model the disclination by a regularized cone where a

disk of radius � around the apex is removed; see Fig. 2(a).
The fictitious gauge fields are related to the nontrivial
holonomy when the spinor is parallel transported along a
closed path �ð�Þ (0 � � � 2�) around the cone

�ð�ð2�ÞÞ ¼ H n�ð�ð0ÞÞ; H n ¼ ei
�n
3 ð�z�z�3�y�y=2Þ:

(3)

H n simply represents the rotation by the Frank angle
n�=3 of the defect. The boundary condition for the enve-
lope function, Eq. (3), compensates the mismatch of the
base functions e�iK�r across the seam in the cut-and-glue

(a)

(b)

(c)

FIG. 1 (color online). Correspondence between the bound state
of (a) and isolated � flux in the defect-free case (n ¼ 0), (b) an
isolated pentagon defect (n ¼ 1) with an external flux �=2, and
(c) an isolated square defect (n ¼ 2) without external flux.
The external flux � was applied through the center marked
by a circle. Results are presented for the model Eq. (1) with
t2i=t ¼ 0:4. The local density-of-states (LDOS) were obtained
on a site of the central polygon using the Lanczos algorithm.
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procedure illustrated in Fig. 2(b), making the total wave
function single-valued [23,24,43,44,47].

To deal with Eq. (3) for general n, we seek for a local
gauge in which the boundary condition is independent
of disclination type. To achieve this goal, we introduce
polar coordinates (r, �) defined in the unfolded plane, see
Fig. 2(a), and perform two singular gauge transformations

��
U ~��

V

n
~�n with

Uð�Þ ¼ ei�=2�z�z ; Vnð�Þ ¼ ein�=4�y�y : (4)

The first operation U transforms � to a corotating spinor
[48], effectively replacing @r by @r þ 1=ð2rÞ in the
Hamiltonian. The second gauge transform Vn introduces
a matrix-valued gauge field into the Hamiltonian, effec-
tively replacing @� by @� � i n4�y�y. The transformed

spinor ~�nðr; �Þ, � ¼ �=ð1� n
6Þ, is now antiperiodic in �

for any n. In the final step, we use a global transformation S

�0
nðr; �Þ ¼ S ~�nðr; �Þ; S ¼ 1ffiffiffi

2
p ð1þ i�x�yÞ; (5)

which block diagonalizes the Hamiltonian and defines two
emergent valleys � ¼ �. The separation into two decoupled
valleys is well-known from the massless case [23–25] but is
not always possible in the presence of a mass term [49].
However, it is possible here for all types of disclinations
because the Haldane mass m�z�z preserves the sixfold
rotation symmetry around the center of a hexagon. The
block-diagonal Hamiltonian H0

n ¼ UHUy with U ¼
SVnU, has the same form for any n. The product ansatz
�0

nðr; �Þ ¼ 	ðrÞeij� with half-integer j decouples radial
and angular part and the radial part is (@ ¼ 1 ¼ v) [43]

H0
�ðnÞ ¼ �i

r

��
r@r þ 1

2

�
��x þ i��ðnÞ�y

�
þm��z: (6)

As before, � ¼ � denotes the emergent valley and [24,25]

��ðnÞ ¼
jþ �

�0
þ n

4 �

1� n
6

: (7)

Equation (7) also accounts for a localized real magnetic
flux � through the origin [43,50]. The topological defect
manifests itself through the denominator 1� n=6 and an

additional gauge flux of n��0=4 with opposite sign in the
two emergent valleys.
The eigenvalue problem H0

�ðnÞ	�ðrÞ ¼ E	�ðrÞ can be
solved in each valley separately. Bound states are given in
terms of modified Bessel functions of the second kind
which decay exponentially for r ! 1. We find

	þðrÞ ¼
Kð�þ�1=2Þð
rÞ

i 

mþEKð�þþ1=2Þð
rÞ

 !
; (8)

	�ðrÞ ¼
�i m�E


 Kð��þ1=2Þð
rÞ
Kð���1=2Þð
rÞ

 !
; (9)

where 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � E2

p
> 0. The square integrability of �

for � ! 0 does not uniquely determine the bound state
[51]. To obtain quantized solutions, the internal structure of
the disk r < � has to be specified. The correct quantization
is achieved by replacing the Haldane mass in Eq. (6) by a
confining potential Vðr < �Þ ¼ �M�z [52–54]. The mass
term �M�z, as compared to the Haldane mass, has oppo-
site sign in one of the emergent valleys, thereby defining
the topologically trivial insulator. Because Uy�zU ¼
�x�x, we identify Vðr < �Þ in the frame of Eq. (2) with
the inversion symmetric mass term of a kekule distortion
[55,56]. For M ! þ1, matching of the wave function at
r ¼ � takes the form

�ðe� � ÎÞ�ð�;�Þ ¼ �ð�;�Þ: (10)

Here, Î ¼ ð��x�z;��yÞT is the normalized axial current

in the frame of Eq. (2) and e� the azimuthal unit vector.

The sign on the left-hand-side is fixed by the Chern number
� ¼ signðmÞ. For � ! 0, Eq. (10) realizes a special case of
the general four parameter family of self-adjoint boundary
conditions [51]. For the spinors of the form Eq. (9), it can
only be satisfied in one valley. Moreover, Eq. (10) leads to
the quantization of the bound-state energy throughffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m� E

mþ E

s
¼ K���1=2ð
�Þ

K��þ1=2ð
�Þ ; (11)

which, in combination with Eq. (7), incorporates the main
result of the present work. As illustrated in Fig. 3(a) for

FIG. 2 (color online). (a) Continuum version of the cut-and-
glue construction with a regularization hole of radius � around
the origin. �ð�Þ is a closed path around the cone. (b) The
boundary conditions for the spinor across the seam have to
compensate for the mismatch of the base functions, as indicated
for a pair of matching degrees of freedom A and B0 for the
pentagon disclination.

FIG. 3 (color online). (a) General solution for the bound-state
energy from Eq. (11) as function of � for different radii of the
hole �jmj. (b) Bound-state energies as function of external flux
�=�0 for the pentagon defect.
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different values of the dimensionless radius �jmj, Eq. (11)
has monotonic real solutions for the bound-state energy
jEj< jmj as function of � in a range j�j< 1=2þ �jmj.
For � ¼ 0 it follows that E ¼ 0 independent of �jmj. The
physical bound-state spectrum as function of flux�=�0 for
a specific defect is constructed from the general solution by
use of Eq. (7) and is found to agree with the numerical
results obtained in the lattice model. The case of a pentagon
defect (n ¼ 1) with either sign of the Chern number � ¼
�1 is illustrate in Fig. 3(b). In particular, this solution
predicts that insertion of an external magnetic flux ��=2
[marked with circle] shifts the bound state to zero energy
while the opposite flux���=2 [marked with square] leads
to two bound states symmetrically arranged with respect to
E ¼ 0, in accordance with the results shown in Fig. 1(b).

The correspondence between external magnetic and
internal fictitious fluxes induced by wedge disclinations
has an intuitive explanation via the coupling of edge modes
across the seam [9,11], as shown in Figs. 4(a) and 4(b) for
n ¼ 1 and 2, respectively, [57]. We start with two discon-
nected flat honeycomb sheets from which a 60�- or 120�-
wedge has been removed. The bulk-edge correspondence
for Chern insulators implies chiral edge states propagating
along the zigzag edges of top and bottom part. In the
vicinity of the energy crossing, they are described by the
edge theory

Hedge ¼
Z

d�’yð�Þ½�iv@��z þ�ð�Þ�x�’ð�Þ; (12)

with �ð�Þ ¼ 0. The two-component wave function ’ð�Þ
varies smoothly on the scale of the lattice constant and
includes right and left movers ’ ¼ ð’R;’LÞT; � is the

coordinate along the cut. The total edge wave function
on a lattice site is given by ’edgeð�Þ ¼ eikE�’Rð�Þ þ
e�ikE�’Lð�Þ, where kE is the edge momentum. Inversion
symmetry implies that the edge states of a zigzag edge
cross at either kEa ¼ 0 or �- in the model Eq. (1), they
cross at kEa ¼ �; see Fig. 4(c). Hence, the base functions
e�ikE� oscillates with a period of two and their amplitudes
are indicated in Figs. 4(a) and 4(b). A weak coupling
between left and right movers is described by � � 0 in
Eq. (12). This gluing across the seam locally opens a gap of
order � in the edge spectrum. However, to account for the
different matching conditions of the base functions, �ð�Þ
acquires an additional factor ð�iÞn on the right-hand side of
the defect. For n ¼ 2, this corresponds to a sign change of
�ð�Þ implying a bound state, cf. Fig. 4(d), in analogy to
solitons in polyacetylene [58]. This sign change is equiva-
lent to a� flux in the defect-free system [13]. Similarly, the
factor (�i) for n ¼ 1 relates to a flux ��=2.
If inversion symmetry is broken, the edge states cross

away from kEa ¼ �. However, as long as the edge state
theory can be obtained by expansion with the base func-
tions at kEa ¼ �, the correspondence between Frank angle
and fictitious flux remains, even though the bound-state
energy in general shifts. We have numerically confirmed
this expected robustness by adding both local perturbations
in the form of on-site potentials as well as various global
symmetry-breaking terms including staggered sublattice
potentials, real second neighbor hopping as well as dimer-
ized first-neighbor hopping.
Our main results are summarized in Fig. 1 and given by

Eq. (11) in combination with Eq. (7) which establish a
correspondence between an external magnetic flux and
internal fictitious fluxes of topological defects in a Chern
insulator on the honeycomb lattice. While the precise
correspondence holds for a specific model on the honey-
comb lattice, our edge-state picture suggests similar results
for other topological models with crystalline symmetry
(including topological superconductors), in line with
Ref. [59]. Our results also generalize to time-reversal
invariant TIs. The disclinations then act as a source of
spin flux [15], i.e., a flux with opposite sign for the two
spin components. The spectrum induced by the topological
defects can be measured by scanning tunneling microscopy
offering a probe of the topological state which is comple-
mentary to measuring the quantized edge currents.
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