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Within a dynamical description of nuclear fragmentation, based on the liquid-gas phase transition

scenario, we explore the relation between neutron-proton density fluctuations and nuclear symmetry

energy. We show that, along the fragmentation path, isovector fluctuations follow the evolution of the local

density and approach an equilibrium value connected to the local symmetry energy. Higher-density

regions are characterized by smaller average asymmetry and narrower isotopic distributions. This

dynamical analysis points out that fragment final state isospin fluctuations can probe the symmetry

energy of the density domains from which fragments originate.
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The dynamics and thermodynamics of complex systems
present general aspects of interest in different domains of
physics. A rather important issue is the identification of the
occurrence of phase transitions. This is relevant for many
microscopic or mesoscopic systems, from metallic clusters
to Bose condensates and nuclei [1–3]. In particular, the
analysis of two-component systems has recently evidenced
new interesting features [4–7].

Under suitable conditions of density and temperature,
the nuclear equation of state (EOS) foresees the possibility
of phase transitions from liquid to vapor phases, a scenario
often evoked to explain the multifragmentation phenome-
non [8–10]. As a consequence of the two-component struc-
ture of nuclear matter, constituted by protons and neutrons,
a crucial role is played by the low-density behavior of the
isovector part of the interaction and the corresponding term
in the nuclear EOS, the symmetry energy [11], on which
many investigations are concentrated [12–16]. We stress
that this information is essential in the astrophysical con-
text, for the understanding of the properties of compact
objects such as neutron stars whose crust behaves as low-
density asymmetric nuclear matter [17,18]. Moreover, the
density dependence of the symmetry energy affects the
structure of exotic nuclei and the appearance of new fea-
tures involving the neutron skin [19].

A connection between the characteristics of clusters
emerging from nuclear fragmentation and the symmetry
energy has been proposed in the framework of macro-
scopic statistical models [20–22]. However, it would be
important to explore this issue within a full dynamical
description of the fragmentation process. Here we under-
take such study for systems facing low-density (spinodal)
instabilities and first-order phase transitions [11]. We
investigate the coupling between the development of
neutron-proton density fluctuations (isovector fluctua-
tions), to which isotopic properties are connected, and
the growth of unstable modes of the total density, leading
to the formation of nuclear drops (fragments). Thus the aim
of this work is to examine the behavior of isovector

fluctuations in rapidly evolving systems to probe their
possible relation to the symmetry energy and its density
dependence.
Theoretically the evolution of complex systems can be

described by a one-body transport equation with a fluctuat-
ing term that incorporates the effects of the unknownmany-
body correlations, the so-called Boltzmann-Langevin
equation [23,24]. We follow the approximate treatment of
the Boltzmann-Langevin equation presented in Ref. [25],
the stochastic mean-field model. We solve the following
equation for the time evolution of the semiclassical one-
body distribution function fðr;p; tÞ:
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where U½�� is the self-consistent mean-field potential,
�Icoll½f� is the average collision integral, and UextðrÞ repre-
sents an external, stochastic field. The coordinates of iso-
spin are not shown for brevity.Within such a framework, the
effective nuclear potential U is derived from energy func-
tionals that usually contain a term proportional to I2, the
symmetry energy Esymð�; IÞ=A � Csymð�ÞI2 [with I �
ð�n � �pÞ=� and �, �n, �p denoting total, neutron, and

proton densities, respectively].
Let us consider the behavior of nuclear matter prepared

with a uniform density distribution �0 and with a Fermi-
Dirac momentum distribution corresponding to a specified
temperature T. The system is confined within a cubic box,
with side L ¼ 19 fm, with periodic boundary conditions
imposed. The linear response analysis allows one to get a
first insight into the fluctuation dynamics. For two-
component matter one can identify two types of indepen-
dent modes of the phase-space density: isoscalarlike
modes, where neutrons and protons oscillate in phase,
and isovectorlike modes, with neutrons and protons oscil-
lating out of phase. In particular, in the case of symmetric
nuclear matter, the two types of modes correspond to
oscillations of fs ¼ fn þ fp (isoscalar modes) and of

fv ¼ fn � fp (isovector modes). Let us denote by
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fqkðp; tÞ (q ¼ s, v) the Fourier transform, with respect to r,
of the difference �fq ¼ fq � fq0 , where fq0 is the system

initial phase-space density. The equation of motion for
these Fourier coefficients follows readily from (1),

@

@t
fqk þ ik � vfqk � i

@Uq
k

@�q k � v @f0
@�

�q
k ¼ iF q

kk � v @f0
@�

:

(2)

Here, @Uq
k=@�

q represents the appropriate Fourier compo-

nent of the derivative of the effective field with respect to
the density �q and F q

kðtÞ is the Fourier component of the

external field. Furthermore, �q
kðtÞ is the Fourier transform

of the density fluctuation ��qðrÞ. Finally, since we will
restrict our analysis to rather low temperatures, in Eq. (2)
we have ignored the average collision term �Icoll, since its
effect is relatively small [26].

For stable modes, the equilibrium variance �q
k associ-

ated with the fluctuation �q
k is linked to the physical

quantities that characterize the response of the system to
the action of the external force F q

k; see Eq. (2). According

to the fluctuation-dissipation theorem [27], one can write

�q
k ¼ T=FqðkÞ, where FqðkÞ ¼ ð@U

q
k

@�q þ 1=N Þ, with N ¼
� 4

ð2�Þ3
R
dp @f0

@� . We notice that Fq is just the second

derivative of the system free energy density with respect
to the density �q. Considering the inverse Fourier trans-
form of �q

k, we obtain, for the equilibrium spatial density
correlations, in a cell of volume �V,

�
ðeqÞ
�q ð�VÞ � h��qðrÞ��qðrÞi

¼ 1

ð2�Þ3
X

k

�q
kdk ¼ T

�V
h1=FqðkÞik; (3)

where the average extends over all k modes.
Focusing on isovector modes, the potential Uv

k repre-

sents the Fourier transform of the symmetry potential

Usym½�0ðrÞ� ¼ 2 �v

�0

R
dr0Cpot

sym½�0ðr0Þ�g�ðjr� r0jÞ, where

Cpot
sym denotes the potential part of Csym, and the smearing

function g� is introduced to account for the finite range

of the nuclear interaction. Thus, we obtain FvðkÞ¼
2Cpot

symð�0Þg�ðkÞ=�0þ1=N �2FsymðkÞ=�0. We note that

the function Fsymð�0Þ � Fsymðk ¼ 0Þ simply coincides

with the volume symmetry free energy that at zero
temperature reduces to the symmetry energy Csymð�0Þ.
We can write

h1=FvðkÞik ¼ �0

2
h1=FsymðkÞik � �0

2Fv
eff

: (4)

Hence we find that equilibrium fluctuations of the isovector
density can be connected to an ‘‘effective’’ symmetry free
energy Fv

eff that, owing to the k dependence of the symme-

try potential, is smaller than the free energy Fsym.

In asymmetric matter, the findings discussed above still
hold for isoscalarlike and isovectorlike oscillations.

Now let us go back to the full nonlinear equations (1)
that are solved numerically with the test particle method
[28]. We have performed stochastic mean-field calcula-
tions for nuclear matter prepared at initial temperature
T ¼ 3 MeV and in several density conditions. Here we
also take account of fluctuations in the isovector channel,
which were neglected in Refs. [28,29]. Isovector fluctua-
tions can be extracted from the model by simply rescaling
the variance by the number of test particles employed in the
simulation [30].
We adopt momentum-independent effective interactions

corresponding to a soft EOS, with compressibility modulus
K ¼ 200 MeV. The coefficient Csym gets a kinetic contri-

bution just frombasic Pauli correlations and a potential part,

Cpot
sym, from the isospin dependence of the interaction. For

the local density (�) dependence of C
pot
sym we consider

two representative parametrizations: one with a linearly

increasing behavior with density (asy-stiff), Cpot
symð�Þ ¼

90� ðMeVÞ, and onewith a kind of saturation above normal

density (asy-soft), Cpot
symð�Þ ¼ �ð238–1009�Þ ðMeVÞ

[28,29]. We notice that at the temperature considered in
the calculation, which is within the typical range observed
in multifragmentation [10], the symmetry energy Csym is

very close to Fsym. As smearing function g�, we take a

Gaussian with width � ¼ 0:9 fm. With this choice, for
nuclear matter at saturation density (�0 ¼ �sat ¼
0:145 fm�3), Eq. (4) gives Fv

eff ¼ 0:7Fsym.

Let us consider first, for the sake of simplicity, the case
of symmetric matter (I ¼ 0). We first concentrate on iso-
vector fluctuations for uniform matter at rest, where equi-
librium conditions are fulfilled. Thus, in order to avoid the
development of volume instabilities at low density [11], we
switch off in the calculations the isoscalar part of the
nuclear potential. Then we calculate the isovector fluctua-
tion variance ��v ¼ hð��nðrÞ � ��pðrÞÞ2i, where the av-

erage is performed over cells of volume �V ¼ 1 fm3. The
effective symmetry free energy can be extracted from the
numerical variance exploiting Eqs. (3) and (4). This quan-
tity is displayed in Fig. 1(a) as a function of the matter
density, for the two parametrizations of the symmetry
energy introduced above (thick lines, full for asy-stiff
and dashed for asy-soft), and compared with the corre-
sponding symmetry free energy Fsym. The numerical

results generally go with the analytical estimation dis-
cussed above: Owing to the k dependence of the symmetry
potential, the extracted Fv

eff is lower than the symmetry free

energy, being reduced by about 30% at saturation density,
and exhibits a density dependence connected to the asy-
stiffness of the effective interaction employed in the
simulations.
The evaluation of the equilibrium isovector fluctuations

of stable matter can be used as a benchmark for the general
and more interesting case where unstable systems are
allowed to evolve. Calculations have been performed
taking, as initial density �0, three values inside the spinodal

PRL 110, 042701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

25 JANUARY 2013

042701-2



region: �1 ¼ 0:0245 fm�3, �2 ¼ 2�1, and �3 ¼ 3�1.
Moreover, for each case, we have considered symmetric
matter [system (1), I1 ¼ 0] and asymmetric matter [system
(2), I2 ¼ 0:142].

Now the system may develop density fluctuations, so
locally the density gets larger (density bumps, leading to
fragments) or smaller (vapor) than the initial value [11].
The separation between the two regimes is smooth, so that
the local density � may vary between zero and values
around the saturation density. Our analysis is performed
at the ‘‘freeze-out’’ time t ¼ 200 fm=c, when isoscalar
density fluctuations saturate. At this time, the average
density of the regions having � larger than �0 goes from
0:064 fm�3 (in the �1 case) to 0:10 fm�3 (�2 case) and
0:12 fm�3 (�3 case).

Our aim is to investigate the behavior of isovector
fluctuations on the short time scale (the freeze-out time)
associated with fragment formation. Isovector fluctuations
are evaluated as a function of the local density inside the
fragmenting system, looking at the variance of the isovec-
tor density �v in cells having the same local density �. As a
measure of the isovector variance ��v , we consider the

quantity Fv
uns ¼ ð�TÞ=ð2�V��vÞ that coincides with Fv

eff if

equilibrium is reached [see Eqs. (3) and (4)]. Results for
Fv
uns, obtained in the case of symmetric matter, are dis-

played in Fig. 1 as a function of the local density for the
three initial density values considered; Figs. 1(b) and 1(c).
Quite interestingly, isovector fluctuations follow the local

value of the symmetry energy independently of the initial
conditions of the system. Indeed the three curves associ-
ated with the different initial densities (full, dashed, and
dotted lines for �1, �2, and �3, respectively) are rather
close to each other and they are also close, for each given
local density, to the equilibrium results discussed above
[here plotted as thick gray (cyan) lines]; thus, locally,
Fv
uns � Fv

eff . These results indicate that, as soon as density

fluctuations start to develop, a quick rearrangement of
isovector fluctuations takes place, so that the equilibrium
value corresponding to the new actual local density is
approached. Indeed, isovectorlike oscillations are charac-
terized by a much shorter time scale, with respect to the
growth of the unstable modes [31]. Thus, important cou-
pling effects between isoscalar and isovector oscillations
are emerging from the solution of the full nonlinear
equations (1).
Calculations have also been performed for the asymmet-

ric system (2), leading to results very close to the ones
displayed in Fig. 1. In the latter case one can also discuss
the isospin distillation mechanism that induces a deviation
of the local asymmetry from the system initial value [29].
In particular, we consider the following density-dependent
quantity, derived from the symmetric system (1) and

the asymmetric system (2): �ðZ=AÞ2 ¼ ðZ=AÞ21 � ðZ=AÞ22,
where ðZ=AÞi (with i ¼ 1, 2) represents for system (i) the
average proton fraction of cells having the same local
density �. This quantity is displayed in Fig. 2 as a function
of �. The different curves correspond to the two EOS [gray
(red) lines for soft, black lines for stiff] and the three initial
densities considered. As a general trend, we observe the
well-known behavior of asymmetric systems: The low-
density regions become more neutron rich, while high-
density regions are more symmetric, just in connection
with the density dependence of the symmetry energy co-
efficient Csymð�Þ. Here what is interesting to notice is that

the distillation mechanism goes together with the density-
dependent behavior of the isovector variances described
just above. As shown by Figs. 1 and 2, large density
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FIG. 1 (color online). (a) The quantity Fv
eff , extracted from

stochastic mean-field simulations, for stable nuclear matter in
several density conditions and at temperature T ¼ 3 MeV (thick
lines). Thin lines show the density dependence of the symmetry
free energy Fsym. Full lines, asy-stiff EOS; dashed lines, asy-soft

EOS. (b) The quantity Fv
uns as a function of the local density for

unstable systems with initial density �1 (full lines), �2 (dashed
lines), �3 (dotted lines), asy-stiff EOS. (c) Same as in (b) for asy-
soft EOS. In (b) and (c) thick gray (cyan) lines represent the
same results shown in (a) as thick lines.
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FIG. 2 (color online). The quantity 4�ðZ=AÞ2Þ (see text) is
plotted as a function of the local density, for systems having
initial density �1 (full lines), �2 (dashed lines), �3 (dot-dashed
lines). Curves are shifted for a better visibility. Black, asy-stiff
EOS; gray (red), asy-soft EOS.
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domains are associated with larger Fv
eff (i.e., smaller fluc-

tuation width ��v=�) and smaller asymmetry, whereas

low-density regions are on average more asymmetric but
also more fluctuating.

Let us move to study the probability YðZ;NÞ to find,
inside a volume V, a given number of protons and neutrons,
Z ¼ �n;VV and N ¼ �p;VV. �n;V and �p;V denote neutron

and proton densities averaged over V, whose sum yields
the density �V . Here we consider V ¼ ð5:5 fmÞ3. The
quantity YðZ;NÞ is proportional to the probability of get-
ting, in the volume V, a specific variation of the isovector
density �v, with respect to the average ��v: Pð�vÞ �
exp�ð�v � ��vÞ2=ð2��vÞ. Using the identity �v=�V ¼ I ¼
ðN � ZÞ=A and considering the equilibrium amplitude of
��v [see Eqs. (3) and (4)], one can write, for the yield ratio

between systems (1) and (2),

lnðY2=Y1Þ � ½ðI � �I1Þ2 � ðI � �I2Þ2�AFv
eff=T; (5)

where Fv
eff and the average asymmetry �Ii are functions of

�V (in our case �I1 ¼ 0). We notice that the ratio Y2=Y1 does
not depend explicitly on the volume V. After some algebra,
Eq. (5) can be rewritten as

lnðY2=Y1Þ� ½ð �I21� �I22ÞðNþZÞ�2ð �I1� �I2ÞðN�ZÞ�Fv
eff=T:

(6)

Expressing �Ii in terms of the average proton or neutron
fraction, we finally get lnðY2=Y1Þ � �N þ �Z, with

�ð�VÞ ¼ 4�ðZ=AÞ2Fv
eff=T;

�ð�VÞ ¼ 4�ðN=AÞ2Fv
eff=T:

(7)

Thus we recover the standard isoscaling relations [20], but
with density-dependent coefficients �ð�VÞ and �ð�VÞ,
linked to the effective symmetry free energy Fv

eff .

The behavior of the exponent � is illustrated in Fig. 3,
where we plot the quantity lnðY2=Y1Þ as a function ofN, for
the charges Z ¼ 1–10. In spite of the implicit density
dependence of the isoscaling parameters, we note that the
slope � is the same for all charges. This result follows from
the opposite trend, shown by Figs. 1 and 2, of the two

quantities �ðZ=AÞ2 and Fv
eff , so that the product remains

almost constant (see the inset of Fig. 3). More precisely, the

quantities �ðZ=AÞ2 and �ðN=AÞ2 go approximately as
�0

�

@Csym

@� j�¼�0
[31], counterbalancing the density depen-

dence of Fv
eff . In the case of a linear behavior of Fv

eff , i.e.,

close to the conditions of our stiff case, the isoscaling
parameters, Eq. (7), would be exactly constant. However,
also in the soft case (not shown in the figure), the exponent
� is roughly the same for all Z values (within 7%.) Within
our framework, the nearly constant value of � (or �) inside
the fragmenting system could be at the origin of the
experimental observation of the same isoscaling parameter
for the several products issued from nuclear reactions [21],
which in principle may originate from different density

regions and/or have different average density. Then, know-
ing � (or �) and the average asymmetry of a considered
reaction product, Eq. (7) gives the corresponding effective
symmetry energy of the density region from which it
emerges. In other words, this analysis allows one to probe
the local symmetry energy of clusterized systems. It should
be noted that this provides different information with
respect to the extraction of the total symmetry energy
associated with clusterized low-density matter [14,32].
To conclude, in this Letter we have undertaken a dynami-

cal study of the disassembly of two-component unstable
systems, focusing on the coupling between the development
of isoscalar and isovector density fluctuations. For nuclear
systems, we have shown that the amplitude of isovector
fluctuations follows the evolution of the local density and
approaches, within time scales compatible with nuclear
reactions at Fermi energies, the corresponding local equi-
librium value that is linked to the density-dependent sym-
metry free energy. Thus, fragment isospin fluctuations and
isoscaling parameters are related to the symmetry energy at
the fragment formation density. These results are relevant to
experimental isoscaling analyses aiming at extracting in-
formation on the symmetry energy, a current topic of strong
interest in nuclear physics and astrophysics [12,17,33–37].
Though secondary decay effects are expected to reduce the
sensitivity of these observables to the specific shape of the
symmetry energy [37], this analysis should still allow one to
probe the range of values spanned within the low-density
conditions reached in nuclear fragmentation reactions.
Finally, it should be noted that our study is performedwithin
the semiclassical approximation. It would be interesting to
introduce quantum fluctuations and investigate their influ-
ence on the relation between isoscaling, isotopic distribu-
tions, and symmetry energy.
Illuminating discussions with F. Matera, F. Gulminelli,

and Ph. Chomaz are gratefully acknowledged.
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FIG. 3 (color online). The quantity lnðY2=Y1Þ is plotted as a
function of N, for the charges Z ¼ 1–10, in the case of the
systems with initial density �1. The stiff parametrization is
considered. Lines are to guide the eye. The inset shows the

product � ¼ 4�ðZ=AÞ2Fv
eff , as a function of the local density.
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Zielinska-Pfabé, and H.H. Wolter, Nucl. Phys. A642, 449
(1998).

[26] C. J. Pethick and D.G. Ravenhall, Ann. Phys. (N.Y.) 183,
131 (1988).

[27] L. D. Landau and E.M. Lifshitz, Statistical Physics, Part 1
(Butterworth-Heinemann, Oxford, 1980), 3rd ed., Vol. 5.

[28] V. Baran, M. Colonna, M. Di Toro, V. Greco, M.
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